Linear Programming Model

 
7.1   Linear Programming Model
 
  • Linear programming problems are related to distribution of resources which are limited in the best way possible so as to minimise costs or maximise profits

  • A linear programming model can be formulated by following the steps given below:

 
 

Formulating a mathematical model for a situation based on the given constraints and presenting it graphically

  • A mathematical model consisting of constraints or objective functions can be obtained from the situation or problem given
  • The model can be formulated by using the variables \(x \text{ and } y\) with the constraints in each situation being  \(\leqslant, \ \geqslant, \ \text{< or >} \)

  • Given a straight line \(ax+by=c\), then,

 
Region above the straight line  Region below the straight line
     
  

Satisfies the inequalities

\(ax+by \geqslant c \text{ and } ax+by \text{ > }c\)

 

  
     
     
  

Satisfies the inequalities

\(ax+by \leqslant c \text{ and } ax+by \text{ < }c\)

where \(b \text{ > }0\)

  
     
 
  • For a line \(ax=c\),
 
Region on the right side of line Region on the left side of line
     
  

Satisfies the inequalities

\(ax \geqslant c \text{ and } ax \text{ > }c\)

  
     
     
  

Satisfies the inequalities

\(ax \leqslant c \text{ and } ax \text{ < }c\)

  
     
 
  • In general, 
     
 
1. \(\geqslant \text{ or } \leqslant\), then a solid line is used
   
2.  \(\text{< or >}\), then a dotted line is used
 
         
 
Example
     
   
(a)

Write a mathematical model for the following situation:

The perimeter of the rectangular photo frame must not be more than \(180 \text{ cm}\).

   
(b) Present the inequalities \(x-2y \geqslant -4\) graphically.
   
   
Solution:
   
(a)

Supposed \(x \text{ and } y\) are the width and length of the rectangular photo frame.

Then, \(2x+2y \text{ < }180\).

   
(b)

Given \(x-2y \geqslant -4\).

Since \(b=-2 \ (\text{< }0)\).

Hence, the region lies below the line

\(x-2y=-4\).

   
 
   
   
 

Optimisation in linear programming

  • Note that \(ax +by\) is a linear expression
  • In general, an objective function is written as
     
  \(k=ax+by\)  
       
 
Remark
     
  

Steps to determine the suitable value of \(k\) for 

\(k=ax+by\):

  
     
 
  1. Note that \(a\text{ and }b\) are coefficients of \(x\text{ and }y\) respectively

  2. Find the common multiples of \(a\text{ and }b\)

  3. Take \(k\) as the common multiple

 
     
 
 

Example:

 
Example
     
   

The diagram above shows the shaded region that satisfies a few constraints of a situation.

Given \(k = x+2y\), find 

   
 
   
(a)

the maximum value of \(k\)

   
(b) the minimum value of \(k\).
   
   
Solution:
   
(a)

Substitute the maximum point for the shaded region, which is \((15,55)\) into \(k = x+2y\).

\(\begin{aligned} k&=15+2(55)\\ &=125 \end{aligned}\)

Therefore, the maximum value of \(k\) is \(125\).

   
(b)

Substitute the minimum point for the shaded region, which is \((15,8)\) into \(k = x+2y\).

\(\begin{aligned} k&=15+2(8)\\ &=31 \end{aligned}\)

Therefore, the minimum value of \(k\) is \(31\)