The First Derivatives

2.2 The First Derivatives
 
The image displays a mathematical formula for the first derivative. It includes the text 'FIRST DERIVATIVE FORMULA' at the top. Below, there is a paper clipped note with the formula: 'If y = ax^n, then dy/dx = anx^(n-1) or d/dx(ax^n) = anx^(n-1)'. At the bottom, there is a logo with the word 'Pandai'.
 
\(3\) Notations Used to Indicate the First Derivative of a Function \(y=ax^n\)
  1. If \(y=3x^2\), then \(\dfrac{dy}{dx}=6x\):
    \(\dfrac{dy}{dx}\) is read as differentiating \(y\) with respect to \(x\).

     
  2. If \(f(x)=3x^2\), then \(f'(x)=6x\):
    \(f'(x)\) is known as the gradient function for the curve \(y=f(x)\) because this function can be used to find the gradient of the curve at any point on the curve.

     
  3. \(\dfrac{d}{dx}(3x^2)=6x\):
    If differentiating \(3x^2\) with respect to \(x\), the result is \(6x\).
 
Gradient Function
  • The process of determining the gradient function \(f'(x)\) from a function \(y=f(x)\) is known as differentiation.
  • The gradient function is also known as the first derivative of the function or the derived function or differentiating coefficient of \(y\) with respect to \(x\).
 
Addition and Subtraction of Functions
  • The derivative of a function which contains terms algebraically added or subtracted can be done by differentiating each term seperately.
  • If \(f(x)\) and \(g(x)\) are functions, then 

\(\dfrac{d}{dx}[f(x)\pm g(x)]=\dfrac{d}{dx}[f(x)] \pm \dfrac{d}{dx}[g(x)]\).

 

 

First Derivative of Composite Function
Chain Rule
  • Formula for chain rule:

\(\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}\)

  • If \(y=g(u)\) and \(u=h(x)\), then differentiating \(y\) with respect to \(x\) will give 

\(f'(x)=g'(u)\times h'(x)\)
That is, \(\dfrac{dy}{dx}=\dfrac{dy}{du} \times \dfrac{du}{dx}\).

 
First Derivative of a Function involving Product and Quotient of Algebraic Expressions
Product Rule

If \(u\) and \(v\) are functions of \(x\), then 

\(\dfrac{d}{dx}(uv)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\).

Quotient Rule

If \(u\) and \(v\) are functions of \(x\), and \(v(x) \neq 0\), then

\(\dfrac{d}{dx} \left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{v^2}\).

 
Example \(1\)
Question

Differentiate each of the following with respect to \(x\):

(a) \(y = \dfrac{1}{5}\sqrt x\),
(b) If \(f(x)=\dfrac{3}{4}x^4\), find \(f'(-1)\) and \(f'\left( \dfrac{1}{3} \right)\).

Solution

(a)

\(\begin{aligned} y &= \dfrac{1}{5}\sqrt x\\\\ &= \dfrac{1}{5}x^{\frac{1}{2}}\\\\ \dfrac{dy}{dx} &= \dfrac{1}{5} \begin{pmatrix} {\dfrac{1}{2}x^{\frac{1}{2}-1}} \end{pmatrix} \\\\ &=\dfrac{1}{10}x^{-\frac{1}{2}}\\\\ &= \dfrac{1}{10 \sqrt x} .\end{aligned}\)


(b)

\(\begin{aligned} f(x) &=\dfrac{3}{4}x^4\\\\ f'(x) &= \dfrac{3}{4} (4x^{4-1})\\\\ &= 3x^3\\\\ f'(-1) &= 3(-1)^3\\ &=-3\\\\ f'\left( \dfrac{1}{3} \right)&=3\left( \dfrac{1}{3} \right)^3\\\\ &=\dfrac{1}{9} .\end{aligned}\)

 
Example \(2\)
Question

Differentiate the following expression with respect to \(x\):

\(\dfrac{(2x+1)(x-1)}{x}\)

Solution

Let,

\(\begin{aligned} y &= \dfrac{(2x+1)(x-1)}{x}\\\\ &= \dfrac{2x^2-x-1}{x}\\\\ &=2x-1-x^{-1}. \end{aligned}\)


\(\begin{aligned} \dfrac{dy}{dx} &= \dfrac{d}{dx}(2x) -\dfrac{d}{dx}(1)-\dfrac{d}{dx}(x^{-1})\\\\ &=2x^{1-1} - 0x^{0-1} - (-1x^{-1-1})\\\\ &=2+x^{-2}\\\\ &= 2+ \dfrac{1}{x^2}. \end{aligned}\)

 
Example \(3\)
Question

Differentiate the following function with respect to \(x\):

\(y=(3x^2-4x)^7\)

Solution

Let,

\(u=3x^2-4x\),
\(y=u^7\).


Then,

\(\dfrac{du}{dx}=6x-4\),
\(\dfrac{dy}{du}=7u^6\).


Using chain rule,

\(\begin{aligned} \dfrac{dy}{dx} &= \dfrac{dy}{du} \times \dfrac{du}{dx}\\\\ &=7u^6(6x-4)\\\\ &=7(3x^2-4x)^6(6x-4)\\\\ &= (42x-28)(3x^2-4x)^6\\\\ &=14(3x-2)(3x^2-4x)^6 .\end{aligned}\)

 
Example \(4\)
Question

Given \(y=x \sqrt{x+3}\), find

(a) the expression for \(\dfrac{dy}{dx}\),
(b) the gradient of the tangent at \(x=6\).

Solution

(a)

Let,

\(u=x\),
\(v=\sqrt{x+3}\).

Using the product rule,

\(\begin{aligned} \dfrac{dy}{dx} &= u \dfrac{dv}{dx} + v \dfrac{du}{dx}\\\\ &= x \dfrac{d}{dx} (\sqrt{x+3})+ \sqrt{x+3} \dfrac{d}{dx}x\\\\ &= x \begin{pmatrix} \dfrac{1}{2 \sqrt{x+3}}\end{pmatrix} + \sqrt{x+3} \\\\ &= \dfrac{x+2(x+3)}{2\sqrt{x+3} }\\\\ &= \dfrac{3(x+2)}{2\sqrt{x+3} }. \end{aligned}\)


(b)

When \(x=6\),

\(\begin{aligned} \dfrac{dy}{dx} &= \dfrac{3(6+2)}{2\sqrt{6+3} }\\\\ &=\dfrac{24}{6}\\\\ &= 4. \end{aligned}\)

Thus, gradient of the tangent at \(x=6\) is \(4\).

 
Example \(5\)
Question

Given \(y=\dfrac{2x+1}{x^2-3}\), find \(\dfrac{dy}{dx}\).

Solution

Let, 

\(u=2x+1\),
\(v=x^2-3\).


Then,

\(\dfrac{du}{dx}=2\),
\(\dfrac{dv}{dx}=2x\).


\(\begin{aligned} \dfrac{dy}{dx} &= \dfrac{v \dfrac{du}{dx} - u \dfrac{dv}{dx}}{v^2}\\\\ &= \dfrac{(x^2-3)(2)-(2x+1)(2x)}{(x^2-3)^2}\\\\ &= \dfrac{2x^2-6-(4x^2+2x)}{(x^2-3)^2}\\\\ &= \dfrac{-2x^2-2x-6}{(x^2-3)^2}\\\\ &= \dfrac{-2(x^2+x+3)}{(x^2-3)^2}. \end{aligned}\)

 

The First Derivatives

2.2 The First Derivatives
 
The image displays a mathematical formula for the first derivative. It includes the text 'FIRST DERIVATIVE FORMULA' at the top. Below, there is a paper clipped note with the formula: 'If y = ax^n, then dy/dx = anx^(n-1) or d/dx(ax^n) = anx^(n-1)'. At the bottom, there is a logo with the word 'Pandai'.
 
\(3\) Notations Used to Indicate the First Derivative of a Function \(y=ax^n\)
  1. If \(y=3x^2\), then \(\dfrac{dy}{dx}=6x\):
    \(\dfrac{dy}{dx}\) is read as differentiating \(y\) with respect to \(x\).

     
  2. If \(f(x)=3x^2\), then \(f'(x)=6x\):
    \(f'(x)\) is known as the gradient function for the curve \(y=f(x)\) because this function can be used to find the gradient of the curve at any point on the curve.

     
  3. \(\dfrac{d}{dx}(3x^2)=6x\):
    If differentiating \(3x^2\) with respect to \(x\), the result is \(6x\).
 
Gradient Function
  • The process of determining the gradient function \(f'(x)\) from a function \(y=f(x)\) is known as differentiation.
  • The gradient function is also known as the first derivative of the function or the derived function or differentiating coefficient of \(y\) with respect to \(x\).
 
Addition and Subtraction of Functions
  • The derivative of a function which contains terms algebraically added or subtracted can be done by differentiating each term seperately.
  • If \(f(x)\) and \(g(x)\) are functions, then 

\(\dfrac{d}{dx}[f(x)\pm g(x)]=\dfrac{d}{dx}[f(x)] \pm \dfrac{d}{dx}[g(x)]\).

 

 

First Derivative of Composite Function
Chain Rule
  • Formula for chain rule:

\(\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}\)

  • If \(y=g(u)\) and \(u=h(x)\), then differentiating \(y\) with respect to \(x\) will give 

\(f'(x)=g'(u)\times h'(x)\)
That is, \(\dfrac{dy}{dx}=\dfrac{dy}{du} \times \dfrac{du}{dx}\).

 
First Derivative of a Function involving Product and Quotient of Algebraic Expressions
Product Rule

If \(u\) and \(v\) are functions of \(x\), then 

\(\dfrac{d}{dx}(uv)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\).

Quotient Rule

If \(u\) and \(v\) are functions of \(x\), and \(v(x) \neq 0\), then

\(\dfrac{d}{dx} \left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{v^2}\).

 
Example \(1\)
Question

Differentiate each of the following with respect to \(x\):

(a) \(y = \dfrac{1}{5}\sqrt x\),
(b) If \(f(x)=\dfrac{3}{4}x^4\), find \(f'(-1)\) and \(f'\left( \dfrac{1}{3} \right)\).

Solution

(a)

\(\begin{aligned} y &= \dfrac{1}{5}\sqrt x\\\\ &= \dfrac{1}{5}x^{\frac{1}{2}}\\\\ \dfrac{dy}{dx} &= \dfrac{1}{5} \begin{pmatrix} {\dfrac{1}{2}x^{\frac{1}{2}-1}} \end{pmatrix} \\\\ &=\dfrac{1}{10}x^{-\frac{1}{2}}\\\\ &= \dfrac{1}{10 \sqrt x} .\end{aligned}\)


(b)

\(\begin{aligned} f(x) &=\dfrac{3}{4}x^4\\\\ f'(x) &= \dfrac{3}{4} (4x^{4-1})\\\\ &= 3x^3\\\\ f'(-1) &= 3(-1)^3\\ &=-3\\\\ f'\left( \dfrac{1}{3} \right)&=3\left( \dfrac{1}{3} \right)^3\\\\ &=\dfrac{1}{9} .\end{aligned}\)

 
Example \(2\)
Question

Differentiate the following expression with respect to \(x\):

\(\dfrac{(2x+1)(x-1)}{x}\)

Solution

Let,

\(\begin{aligned} y &= \dfrac{(2x+1)(x-1)}{x}\\\\ &= \dfrac{2x^2-x-1}{x}\\\\ &=2x-1-x^{-1}. \end{aligned}\)


\(\begin{aligned} \dfrac{dy}{dx} &= \dfrac{d}{dx}(2x) -\dfrac{d}{dx}(1)-\dfrac{d}{dx}(x^{-1})\\\\ &=2x^{1-1} - 0x^{0-1} - (-1x^{-1-1})\\\\ &=2+x^{-2}\\\\ &= 2+ \dfrac{1}{x^2}. \end{aligned}\)

 
Example \(3\)
Question

Differentiate the following function with respect to \(x\):

\(y=(3x^2-4x)^7\)

Solution

Let,

\(u=3x^2-4x\),
\(y=u^7\).


Then,

\(\dfrac{du}{dx}=6x-4\),
\(\dfrac{dy}{du}=7u^6\).


Using chain rule,

\(\begin{aligned} \dfrac{dy}{dx} &= \dfrac{dy}{du} \times \dfrac{du}{dx}\\\\ &=7u^6(6x-4)\\\\ &=7(3x^2-4x)^6(6x-4)\\\\ &= (42x-28)(3x^2-4x)^6\\\\ &=14(3x-2)(3x^2-4x)^6 .\end{aligned}\)

 
Example \(4\)
Question

Given \(y=x \sqrt{x+3}\), find

(a) the expression for \(\dfrac{dy}{dx}\),
(b) the gradient of the tangent at \(x=6\).

Solution

(a)

Let,

\(u=x\),
\(v=\sqrt{x+3}\).

Using the product rule,

\(\begin{aligned} \dfrac{dy}{dx} &= u \dfrac{dv}{dx} + v \dfrac{du}{dx}\\\\ &= x \dfrac{d}{dx} (\sqrt{x+3})+ \sqrt{x+3} \dfrac{d}{dx}x\\\\ &= x \begin{pmatrix} \dfrac{1}{2 \sqrt{x+3}}\end{pmatrix} + \sqrt{x+3} \\\\ &= \dfrac{x+2(x+3)}{2\sqrt{x+3} }\\\\ &= \dfrac{3(x+2)}{2\sqrt{x+3} }. \end{aligned}\)


(b)

When \(x=6\),

\(\begin{aligned} \dfrac{dy}{dx} &= \dfrac{3(6+2)}{2\sqrt{6+3} }\\\\ &=\dfrac{24}{6}\\\\ &= 4. \end{aligned}\)

Thus, gradient of the tangent at \(x=6\) is \(4\).

 
Example \(5\)
Question

Given \(y=\dfrac{2x+1}{x^2-3}\), find \(\dfrac{dy}{dx}\).

Solution

Let, 

\(u=2x+1\),
\(v=x^2-3\).


Then,

\(\dfrac{du}{dx}=2\),
\(\dfrac{dv}{dx}=2x\).


\(\begin{aligned} \dfrac{dy}{dx} &= \dfrac{v \dfrac{du}{dx} - u \dfrac{dv}{dx}}{v^2}\\\\ &= \dfrac{(x^2-3)(2)-(2x+1)(2x)}{(x^2-3)^2}\\\\ &= \dfrac{2x^2-6-(4x^2+2x)}{(x^2-3)^2}\\\\ &= \dfrac{-2x^2-2x-6}{(x^2-3)^2}\\\\ &= \dfrac{-2(x^2+x+3)}{(x^2-3)^2}. \end{aligned}\)