Indefinite Integral

3.2 Indefinite Integral
 
The image shows a title at the top that reads 'Indefinite Integral Formula.' Below the title, there are two cards with mathematical formulas. The card on the left is labeled 'Constant a' and displays the formula for the integral of a constant: ∫ a dx = ax + c. The card on the right is labeled 'Function ax^n' and shows the formula for the integral of a power function: ∫ ax^n dx = (ax^(n+1))/(n+1) + c. The cards are connected with paper clips.
 
Constant of Integration, \(c\)

The constant of integration, \(c\) is added as a part of indefinite integral for a function. For example,

\(\int 5 \, dx=5x+c\).

 
Indefinite Integral for Algebraic Functions

If \(f(x)\) and \(g(x)\) are functions, then

\(\int [f(x)\pm g(x)] \, dx =\int f(x) \, dx \pm \int g(x) \, dx\).

 
Indefinite Integral for Functions in the Form of \((ax+b)^n\)

Substitution method can be use to solve any functions in the form of \((ax+b)^n\). Then,

\(\int (ax+b)^n \, dx=\dfrac{(ax+b)^{n+1}}{a(n+1)}+c\),

where \(a\) and \(b\) are constants, \(n\) is an integer and \(n \neq -1\).

 
Equation of a Curve from its Gradient Function
Given the gradient function \(\dfrac{dy}{dx}=f'(x)\), the equation of curve for that function is \(y=\int f'(x) \, dx\).
 
Example \(1\)
Question

Integrate each of the following with the respect to \(x\):

(a) \(-0.5\),
(b) \(\int \dfrac{2}{x^2} \, dx\).

Solution

(a)

\(\int -0.5 \ dx = -0.5x +c\).


(b)

\(\begin{aligned} \int \dfrac{2}{x^2} \ dx &= 2 \int x^{-2} \ dx\\\\ &= 2 \begin{pmatrix} \dfrac{x^{-2+1}}{-2+1} \end{pmatrix} +c\\\\ &= -2x^{-1} +c\\\\ &= -\dfrac{2}{x} +c. \end{aligned}\)

 
Example \(2\)
Question

Find the integral for the following

\(\int (x-2)(x+6) \, dx\)

Solution

\(\begin{aligned} \int (x-2)(x+6) \ dx &= \int (x^2 +4x - 12) \ dx\\\\ &= \int x^2 \ dx + \int 4x \ dx-\int12 \ dx\\\\ &= \dfrac{x^3}{3} + \dfrac{4x^2}{2} - 12x +c\\\\ &= \dfrac{x^3}{3} + 2x^2- 12x +c. \end{aligned}\)

 
Example \(3\)
Question

(a) By using the substitution method, find the indefinite integral for the following

\(\int \sqrt{5x+2} \, dx\)

(b) The gradient function of a curve at point \((x,y)\) is given by

\(\dfrac{dy}{dx} = 15x^2 + 4x- 3\)

If the curve passes through the point \((-1, 2)\),  find the equation of the curve.

Solution

(a)

Let \(u=5x+2\), so,

\(\begin{aligned} \dfrac{du}{dx} &=5\\\\ dx&= \dfrac{du}{5} \end{aligned}\)

\(\begin{aligned} \int \sqrt{5x+2} \ dx &= \int \dfrac{\sqrt u}{5} \ du\\\\ &= \int \dfrac{u^{\frac{1}{2}}}{5} \ du\\\\ &=\dfrac{2}{15}u^{\frac{3}{2}} +c\\\\ &= \dfrac{2}{15}(5x+2)^{\frac{3}{2}}+c. \end{aligned}\)


(b)

Given \(\dfrac{dy}{dx} = 15x^2 + 4x- 3\).

Then,

\(\begin{aligned} y&=\int (15x^2 +4x-3) \ dx\\\\ y&=5x^3 +2x^2-3x+c. \end{aligned}\)

When \(x=-1\) and \(y=2\),

\(\begin{aligned} 2&=5(-1)^3+2(-1)^2-3(-1)+c\\ c&=2 .\end{aligned}\)

Thus, the equation of the curve is:

\(y=5x^3 +2x^2-3x+2\).

 

Indefinite Integral

3.2 Indefinite Integral
 
The image shows a title at the top that reads 'Indefinite Integral Formula.' Below the title, there are two cards with mathematical formulas. The card on the left is labeled 'Constant a' and displays the formula for the integral of a constant: ∫ a dx = ax + c. The card on the right is labeled 'Function ax^n' and shows the formula for the integral of a power function: ∫ ax^n dx = (ax^(n+1))/(n+1) + c. The cards are connected with paper clips.
 
Constant of Integration, \(c\)

The constant of integration, \(c\) is added as a part of indefinite integral for a function. For example,

\(\int 5 \, dx=5x+c\).

 
Indefinite Integral for Algebraic Functions

If \(f(x)\) and \(g(x)\) are functions, then

\(\int [f(x)\pm g(x)] \, dx =\int f(x) \, dx \pm \int g(x) \, dx\).

 
Indefinite Integral for Functions in the Form of \((ax+b)^n\)

Substitution method can be use to solve any functions in the form of \((ax+b)^n\). Then,

\(\int (ax+b)^n \, dx=\dfrac{(ax+b)^{n+1}}{a(n+1)}+c\),

where \(a\) and \(b\) are constants, \(n\) is an integer and \(n \neq -1\).

 
Equation of a Curve from its Gradient Function
Given the gradient function \(\dfrac{dy}{dx}=f'(x)\), the equation of curve for that function is \(y=\int f'(x) \, dx\).
 
Example \(1\)
Question

Integrate each of the following with the respect to \(x\):

(a) \(-0.5\),
(b) \(\int \dfrac{2}{x^2} \, dx\).

Solution

(a)

\(\int -0.5 \ dx = -0.5x +c\).


(b)

\(\begin{aligned} \int \dfrac{2}{x^2} \ dx &= 2 \int x^{-2} \ dx\\\\ &= 2 \begin{pmatrix} \dfrac{x^{-2+1}}{-2+1} \end{pmatrix} +c\\\\ &= -2x^{-1} +c\\\\ &= -\dfrac{2}{x} +c. \end{aligned}\)

 
Example \(2\)
Question

Find the integral for the following

\(\int (x-2)(x+6) \, dx\)

Solution

\(\begin{aligned} \int (x-2)(x+6) \ dx &= \int (x^2 +4x - 12) \ dx\\\\ &= \int x^2 \ dx + \int 4x \ dx-\int12 \ dx\\\\ &= \dfrac{x^3}{3} + \dfrac{4x^2}{2} - 12x +c\\\\ &= \dfrac{x^3}{3} + 2x^2- 12x +c. \end{aligned}\)

 
Example \(3\)
Question

(a) By using the substitution method, find the indefinite integral for the following

\(\int \sqrt{5x+2} \, dx\)

(b) The gradient function of a curve at point \((x,y)\) is given by

\(\dfrac{dy}{dx} = 15x^2 + 4x- 3\)

If the curve passes through the point \((-1, 2)\),  find the equation of the curve.

Solution

(a)

Let \(u=5x+2\), so,

\(\begin{aligned} \dfrac{du}{dx} &=5\\\\ dx&= \dfrac{du}{5} \end{aligned}\)

\(\begin{aligned} \int \sqrt{5x+2} \ dx &= \int \dfrac{\sqrt u}{5} \ du\\\\ &= \int \dfrac{u^{\frac{1}{2}}}{5} \ du\\\\ &=\dfrac{2}{15}u^{\frac{3}{2}} +c\\\\ &= \dfrac{2}{15}(5x+2)^{\frac{3}{2}}+c. \end{aligned}\)


(b)

Given \(\dfrac{dy}{dx} = 15x^2 + 4x- 3\).

Then,

\(\begin{aligned} y&=\int (15x^2 +4x-3) \ dx\\\\ y&=5x^3 +2x^2-3x+c. \end{aligned}\)

When \(x=-1\) and \(y=2\),

\(\begin{aligned} 2&=5(-1)^3+2(-1)^2-3(-1)+c\\ c&=2 .\end{aligned}\)

Thus, the equation of the curve is:

\(y=5x^3 +2x^2-3x+2\).