Application of Differentiation

2.4 Application of Differentiation
 
The image illustrates real-life applications of differentiation. It features a title on the left side that reads 'REAL LIFE APPLICATION OF DIFFERENTIATION' with the Pandai logo beneath it. Three arrows point from the title to three applications on the right: 1. 'Designing roller coaster track' with an image of a roller coaster. 2. 'Curvature of roads' with an image of a winding road. 3. 'Building bridges' with an image of a bridge.
 
Gradient of Tangent to a Curve at Different Points
  • The gradient changes at different points on a curve.
  • The gradient function \(f'(x)\) is used to determine the gradient of tangent to the curve at any point on the function graph \(f(x)\).
  • For example, for the function \(f(x)=x^2\):
Value of \(x\) Gradient Function \(f'(x)=2x\)
\(-2\) \(-4\)
\(-1\) \(-2\)
\(0\) \(0\)
\(1\) \(2\)
\(2\) \(4\)
 
The Equation of Tangent and Normal to a Curve at a Point
Figure of Gradient of Tangent

A graph displaying a line labeled 'gradient,' illustrating the concept of slope in a visual format.

Figure of Tangent and Normal

A diagram illustrating the normal and tangent lines to a curve, highlighting their geometric relationships and properties.

Description
  • Based on the above diagram, the formula for the equation of straight line \(l\) with gradient \(m\) that passes through point \(P(x_1, y_1)\) can be written as:

\(y-y_1=m(x-x_1)\)

  • The equation of the tangent is:

\(y-f(a)=f'(a)(x-a)\)

  • The line which is perpendicular to the tangent is the normal to the curve  \(y=f(x)\) at point \(P(a,f(a))\).

  •   If the gradient of the tangent, \(f'(a)\) exists and is non-zero, the gradient of the normal based on the relation of \(m_1m_2=-1\) is:

\(-\dfrac{1}{f'(a)}\)

  • The equation of the normal is:

\(y-f(a)=-\dfrac{1}{f'(a)}(x-a)\)

 
Turning Points and Their Nature
Figure

A graph depicting a function y=f(x), highlighting minimum turning point, inflection points, and maximum turning point.

 
\(3\) Types of Stationary Points
Maximum Point
  • Turning points.
  • When \(x\) increases through \(x=c\), the value of \(\dfrac{dy}{dx}\) changes sign from positive to negative.
Minimum Point
  • Turning points.
  • When \(x\) increases through \(x=a\), the value of \(\dfrac{dy}{dx}\) changes sign from negative to positive.
Point of Inflection
  • This stationary point which is not a maximum or a minimum point.
  • A point on the curve at which the curvature of the graph changes.
  • When \(x\) increases through \(x=b\), the value of \(\dfrac{dy}{dx}\) does not change in sign.
 
Conditions of Turning Points
Maximum Point

A turning point on a curve \(y=f(x)\) is a maximum point when \(\dfrac{dy}{dx}=0\) and \(\dfrac{d^2y}{dx^2} \lt 0\).

Minimum Point

A turning point on a curve \(y=f(x)\) is a minimum point when \(\dfrac{dy}{dx}=0\) and \(\dfrac{d^2y}{dx^2} \gt 0\).

 
Change of \(y\) and \(x\) over time, \(t\)

By applying the chain rule concept, if two variables, \(y\) and \(x\) change with time, \(t\) and are related by the equation \(y=f(x)\), then the rates of change \(\dfrac{dy}{dt}\) and \(\dfrac{dx}{dt}\) can be related by:

\(\dfrac{dy}{dt}=\dfrac{dy}{dx}\times \dfrac{dx}{dt}\)

 
Determining Small Changes and Approximations of Certain Quantities
  • If \(y=f(x)\) and the small change in \(x\), that is \(\delta x\) causes a small change in \(y\)\(\delta y\), then:

\(\delta y\approx\dfrac{dy}{dx} \times \delta x\)


  • Since \(f(x+\delta x)=y+\delta y\) and \(\delta y\approx\dfrac{dy}{dx} \times \delta x\), then:

\(f(x+\delta x)=y+\dfrac{dy}{dx}\delta x\) or \(f(x+\delta x)=f(x)+\dfrac{dy}{dx}\delta x\)


  • If \(x\) changes from \(x\) to \(x+\delta x\), then:
    • The percentage change in \(x=\dfrac{\delta x}{x}\times 100\%\)
    • The percentage change in \(y=\dfrac{\delta y}{y}\times 100\%\)
 
Example \(1\)
Question

Find the equation of the tangent and normal to the curve \(f(x)=x^3-2x^2+5\) at point \(P(2,5)\).

Solution

Given,

\(f(x)=x^3-2x^2+5\).

So,

\(f'(x)=3x^2-4x\).


At point \(P(2,5)\),

Gradient of the tangent:

\(\begin{aligned} f'(2)&=3(2)^2-4(2) \\ &=3(4)-8 \\ &=4. \end{aligned}\)


Equation of the tangent:

\(\begin{aligned} y-5&=4(x-2) \\ y-5&=4x-8 \\ y&=4x-8+5 \\ y&=4x-3. \end{aligned}\)


Gradient of the normal at point \(P(2,5)\):

\(\begin{aligned} m_Tm_N&=-1 \\ (4)m_N&=-1 \\ m_N&=-\dfrac{1}{4}. \end{aligned}\)


Equation of the normal:

\(\begin{aligned} y-5&=-\dfrac{1}{4}(x-2) \\ y-5&=-\dfrac{1}{4}x+\dfrac{1}{2} \\ y&=-\dfrac{1}{4}x+\dfrac{1}{2}+5 \\ y&=-\dfrac{1}{4}x+\dfrac{11}{2}. \end{aligned}\)

 
Example \(2\)
Question

Given \(y=x^3\), find 

(a) the approximate change in \(y\) when \(x\) increases from \(4\) to \(4.05\),
(b) the approximate change in \(x\) when \(y\) decreases from \(8\) to \(7.97\).

Solution

(a)

\(y=x^3\),

\(\dfrac{dy}{dx}=3x^2\).

When \(x=4\),

\(\begin{aligned} \delta x&=4.05-4 \\ &=0.05 \\\\ \dfrac{dy}{dx}&=3(4)^2 \\ &=48 \\\\ \delta y &\approx \dfrac{dy}{dx}\times \delta x \\ &=48 \times 0.05 \\ \delta y &=2.4. \end{aligned}\)

Therefore, the approximate change in \(y\)\(\delta y\) is \(2.4\).

\(\delta y \gt 0\) means there is a small increase in \(y\) of \(2.4\).


(b)

When \(y=8\),

\(\begin{aligned} x^3&=8 \\ x&=2 \\\\ \delta y&=7.97-8 \\ &=-0.03 \\\\ \dfrac{dy}{dx}&=3(2)^2 \\ &=12 \\\\ \delta y &\approx \dfrac{dy}{dx} \times \delta x \\ -0.03&=12\times\delta x \\ \delta x&=\dfrac{-0.03}{12} \\ \delta x&=-0.0025. \end{aligned}\)

Therefore, the approximate change in \(x\)\(\delta x\) is \(-0.0025\).

\(\delta x \lt 0\) means there is a small decrease in \(x\) of \(0.0025\).

 

Application of Differentiation

2.4 Application of Differentiation
 
The image illustrates real-life applications of differentiation. It features a title on the left side that reads 'REAL LIFE APPLICATION OF DIFFERENTIATION' with the Pandai logo beneath it. Three arrows point from the title to three applications on the right: 1. 'Designing roller coaster track' with an image of a roller coaster. 2. 'Curvature of roads' with an image of a winding road. 3. 'Building bridges' with an image of a bridge.
 
Gradient of Tangent to a Curve at Different Points
  • The gradient changes at different points on a curve.
  • The gradient function \(f'(x)\) is used to determine the gradient of tangent to the curve at any point on the function graph \(f(x)\).
  • For example, for the function \(f(x)=x^2\):
Value of \(x\) Gradient Function \(f'(x)=2x\)
\(-2\) \(-4\)
\(-1\) \(-2\)
\(0\) \(0\)
\(1\) \(2\)
\(2\) \(4\)
 
The Equation of Tangent and Normal to a Curve at a Point
Figure of Gradient of Tangent

A graph displaying a line labeled 'gradient,' illustrating the concept of slope in a visual format.

Figure of Tangent and Normal

A diagram illustrating the normal and tangent lines to a curve, highlighting their geometric relationships and properties.

Description
  • Based on the above diagram, the formula for the equation of straight line \(l\) with gradient \(m\) that passes through point \(P(x_1, y_1)\) can be written as:

\(y-y_1=m(x-x_1)\)

  • The equation of the tangent is:

\(y-f(a)=f'(a)(x-a)\)

  • The line which is perpendicular to the tangent is the normal to the curve  \(y=f(x)\) at point \(P(a,f(a))\).

  •   If the gradient of the tangent, \(f'(a)\) exists and is non-zero, the gradient of the normal based on the relation of \(m_1m_2=-1\) is:

\(-\dfrac{1}{f'(a)}\)

  • The equation of the normal is:

\(y-f(a)=-\dfrac{1}{f'(a)}(x-a)\)

 
Turning Points and Their Nature
Figure

A graph depicting a function y=f(x), highlighting minimum turning point, inflection points, and maximum turning point.

 
\(3\) Types of Stationary Points
Maximum Point
  • Turning points.
  • When \(x\) increases through \(x=c\), the value of \(\dfrac{dy}{dx}\) changes sign from positive to negative.
Minimum Point
  • Turning points.
  • When \(x\) increases through \(x=a\), the value of \(\dfrac{dy}{dx}\) changes sign from negative to positive.
Point of Inflection
  • This stationary point which is not a maximum or a minimum point.
  • A point on the curve at which the curvature of the graph changes.
  • When \(x\) increases through \(x=b\), the value of \(\dfrac{dy}{dx}\) does not change in sign.
 
Conditions of Turning Points
Maximum Point

A turning point on a curve \(y=f(x)\) is a maximum point when \(\dfrac{dy}{dx}=0\) and \(\dfrac{d^2y}{dx^2} \lt 0\).

Minimum Point

A turning point on a curve \(y=f(x)\) is a minimum point when \(\dfrac{dy}{dx}=0\) and \(\dfrac{d^2y}{dx^2} \gt 0\).

 
Change of \(y\) and \(x\) over time, \(t\)

By applying the chain rule concept, if two variables, \(y\) and \(x\) change with time, \(t\) and are related by the equation \(y=f(x)\), then the rates of change \(\dfrac{dy}{dt}\) and \(\dfrac{dx}{dt}\) can be related by:

\(\dfrac{dy}{dt}=\dfrac{dy}{dx}\times \dfrac{dx}{dt}\)

 
Determining Small Changes and Approximations of Certain Quantities
  • If \(y=f(x)\) and the small change in \(x\), that is \(\delta x\) causes a small change in \(y\)\(\delta y\), then:

\(\delta y\approx\dfrac{dy}{dx} \times \delta x\)


  • Since \(f(x+\delta x)=y+\delta y\) and \(\delta y\approx\dfrac{dy}{dx} \times \delta x\), then:

\(f(x+\delta x)=y+\dfrac{dy}{dx}\delta x\) or \(f(x+\delta x)=f(x)+\dfrac{dy}{dx}\delta x\)


  • If \(x\) changes from \(x\) to \(x+\delta x\), then:
    • The percentage change in \(x=\dfrac{\delta x}{x}\times 100\%\)
    • The percentage change in \(y=\dfrac{\delta y}{y}\times 100\%\)
 
Example \(1\)
Question

Find the equation of the tangent and normal to the curve \(f(x)=x^3-2x^2+5\) at point \(P(2,5)\).

Solution

Given,

\(f(x)=x^3-2x^2+5\).

So,

\(f'(x)=3x^2-4x\).


At point \(P(2,5)\),

Gradient of the tangent:

\(\begin{aligned} f'(2)&=3(2)^2-4(2) \\ &=3(4)-8 \\ &=4. \end{aligned}\)


Equation of the tangent:

\(\begin{aligned} y-5&=4(x-2) \\ y-5&=4x-8 \\ y&=4x-8+5 \\ y&=4x-3. \end{aligned}\)


Gradient of the normal at point \(P(2,5)\):

\(\begin{aligned} m_Tm_N&=-1 \\ (4)m_N&=-1 \\ m_N&=-\dfrac{1}{4}. \end{aligned}\)


Equation of the normal:

\(\begin{aligned} y-5&=-\dfrac{1}{4}(x-2) \\ y-5&=-\dfrac{1}{4}x+\dfrac{1}{2} \\ y&=-\dfrac{1}{4}x+\dfrac{1}{2}+5 \\ y&=-\dfrac{1}{4}x+\dfrac{11}{2}. \end{aligned}\)

 
Example \(2\)
Question

Given \(y=x^3\), find 

(a) the approximate change in \(y\) when \(x\) increases from \(4\) to \(4.05\),
(b) the approximate change in \(x\) when \(y\) decreases from \(8\) to \(7.97\).

Solution

(a)

\(y=x^3\),

\(\dfrac{dy}{dx}=3x^2\).

When \(x=4\),

\(\begin{aligned} \delta x&=4.05-4 \\ &=0.05 \\\\ \dfrac{dy}{dx}&=3(4)^2 \\ &=48 \\\\ \delta y &\approx \dfrac{dy}{dx}\times \delta x \\ &=48 \times 0.05 \\ \delta y &=2.4. \end{aligned}\)

Therefore, the approximate change in \(y\)\(\delta y\) is \(2.4\).

\(\delta y \gt 0\) means there is a small increase in \(y\) of \(2.4\).


(b)

When \(y=8\),

\(\begin{aligned} x^3&=8 \\ x&=2 \\\\ \delta y&=7.97-8 \\ &=-0.03 \\\\ \dfrac{dy}{dx}&=3(2)^2 \\ &=12 \\\\ \delta y &\approx \dfrac{dy}{dx} \times \delta x \\ -0.03&=12\times\delta x \\ \delta x&=\dfrac{-0.03}{12} \\ \delta x&=-0.0025. \end{aligned}\)

Therefore, the approximate change in \(x\)\(\delta x\) is \(-0.0025\).

\(\delta x \lt 0\) means there is a small decrease in \(x\) of \(0.0025\).