The First Derivatives

2.2   The First Derivatives
 
  • For the function \(y=ax^n\), where \(a\) is a constant and \(n\) is an integer:
     
   \( \text{If }y=ax^n, \text{then} \\\\ \begin{aligned} \dfrac{dy}{dx} = anx^{n-1} \text{ or } \\\\\dfrac{d}{dx}(ax^n) = anx^{n-1} \end{aligned}\)   
     
 
  For \(y=ax^n\),  
 
  • If \(n=1, \ \dfrac{dy}{dx}=a\)
 
     
 
  • If \(n=0, \ \dfrac{dy}{dx}=0\)
 
 
     
  

\(3\) Notations Used to Indicate the First Derivative of a Function \(y=ax^n\)

  
     
     
 
1. If \(y=3x^2, \text{ then } \dfrac{dy}{dx} = 6x\)
   
 
  • \(\dfrac{dy}{dx}\) is read as differentiating \(y \text{ with respect to } x\)
   
2. If \(f(x) =3x^2, \text{ then } f'(x)=6x\)
   
 
  • \(f'(x)\) is known as the gradient function for the curve \(y=f(x)\) at any point on the curve
   
3. \(\dfrac{dy}{dx}(3x^2) = 6x\)
   
 
  • If differentiating \(3x^2 \text{ with respect to } x, \text{ the result is } 6x\)
   
 
 
Differentiation
     
  

The process of determining the gradient function \(f'(x)\) from 

a function \(y=f(x)\)

  
     
 
  • The gradient function is also known as the first derivative of the function or the derivatived function or differentiating coefficient of \(y\) with respect to \(x\).
 
   Example   
     
  Differentiate each of the following with respect to \(x\) :  
     
 
(a) \(y = \dfrac{1}{5}\sqrt x\)
   
(b) If  \(f(x) =\dfrac{3}{4}x^4, \text{ find } f'(-1) \text{ and } f'\begin{pmatrix} 1 \\ 3 \end{pmatrix}\)
   
   
Solution:
   
(a) \(\begin{aligned} y &= \dfrac{1}{5}\sqrt x\\\\ &= \dfrac{1}{5}x^{\frac{1}{2}}\\\\ \dfrac{dy}{dx} &= \dfrac{1}{5} \begin{pmatrix} {\dfrac{1}{2}x^{\frac{1}{2}-1}} \end{pmatrix} \\\\ &=\dfrac{1}{10}x^{-\frac{1}{2}}\\\\ &= \dfrac{1}{10 \sqrt x} \end{aligned}\)
   
(b) \(\begin{aligned} f(x) &=\dfrac{3}{4}x^4\\\\ f'(x) &= \dfrac{3}{4} (4x^{4-1})\\\\ &= 3x^3\\\\ f'(-1) &= 3(-1)^3\\ &=-3\\\\ f'\begin{pmatrix} 1 \\ 3 \end{pmatrix}&=3\begin{pmatrix} 1 \\ 3 \end{pmatrix}^3\\\\ &=\dfrac{1}{9} \end{aligned}\)
   
 
 
  • The derivative of a function which contains terms algebraically added or substracted can be done by differentiating each term separately
  • If \(f(x)\) and \(g(x)\) are functions, then:
     
   \( \dfrac{d}{dx}[f(x) \pm g(x)]\ = \ \dfrac{d}{dx}[f(x)] \pm \dfrac{d}{dx}[ g(x)]\ \)   
     
 
   Example   
     
  Differentiate each of the following with respect to \(x\) :   
 

\(\dfrac{(2x+1)(x-1)}{x}\)

 
     
  Solution:  
     
  \(\begin{aligned} \text{Let } y &= \dfrac{(2x+1)(x-1)}{x}\\\\ &= \dfrac{2x^2-x-1}{x}\\\\ &=2x-1-x^{-1}\\\\\\ \dfrac{dy}{dx} &= \dfrac{d}{dx}(2x) -\dfrac{d}{dx}(1)-\dfrac{d}{dx}(x^{-1})\\\\ &=2x^{1-1} - 0x^{0-1} - (-1x^{-1-1})\\\\ &=2+x^{-2}\\\\ &= 2+ \dfrac{1}{x^2} \end{aligned}\)  
     
 
  • Chain Rule:
     
    \(\dfrac{dy}{dx} = \dfrac{dy}{du} \times \dfrac{du}{dx}\)    
     
 
     
   If \(y=g(u)\) and \(u=h(x)\), then differentiating \(y\) with respect to \(x\) will give   
     
  \(\begin{aligned} f'(x)&=g'(u) \times h'(x), \text{ that is}\\\\ \dfrac{dy}{dx} &= \dfrac{dy}{du} \times \dfrac{du}{dx} \end{aligned}\)  
     
 
   Example   
     
  Differentiate each of the following with respect to \(x\) :   
 

\(y=(3x^2-4x)^7\)

 
     
  Solution:  
     
 

\( \text{Let } u = (3x^2-4x) \text{ and } y=u^7\\\\\\ \text{Then, }\dfrac{du}{dx} = 6x-4 \text{ and } \dfrac{dy}{du} = 7u^6\\\\\\ \)

 
  With chain rule,  
     
  \(\begin{aligned} \dfrac{dy}{dx} &= \dfrac{dy}{du} \times \dfrac{du}{dx}\\\\ &=7u^6(6x-4)\\\\ &=7(3x^2-4x)^6(6x-4)\\\\ &= (42x-28)(3x^2-4x)^6\\\\ &=14(3x-2)(3x^2-4x)^6 \end{aligned}\)  
     
 
  • Product Rule:
     
    If \(u\) and \(v\) are functions of \(x\), then    
     
  \(\dfrac{d}{dx}(uv) = u \dfrac{dv}{dx} + v \dfrac{du}{dx}\)  
     
 
Remark
       
  \(\dfrac{d}{dx}(uv) \neq \dfrac{du}{dx} \times \dfrac{dv}{dx}\)    
     
 
 
   Example   
     
  Given \(y=x \sqrt{x+3}\), find  
     
 
(a) the expression for \(\dfrac{dy}{dx}\)
   
(b) the gradient of the tangent at \(x=6\)
   
   
Solution:
   
(a) \(\text{Let }u=x \text{ and } v= \sqrt{x+3}\)
   
  Then using the product rule,
   
  \(\begin{aligned} \dfrac{dy}{dx} &= u \dfrac{dv}{dx} + v \dfrac{du}{dx}\\\\ &= x \dfrac{d}{dx} (\sqrt{x+3})+ \sqrt{x+3} \dfrac{d}{dx}x\\\\ &= x \begin{pmatrix} \dfrac{1}{2 \sqrt{x+3}}\end{pmatrix} + \sqrt{x+3} \\\\ &= \dfrac{x+2(x+3)}{2\sqrt{x+3} }\\\\ &= \dfrac{3(x+2)}{2\sqrt{x+3} } \end{aligned}\)
   
(b) When \(x=6\),
   
  \(\begin{aligned} \dfrac{dy}{dx} &= \dfrac{3(6+2)}{2\sqrt{6+3} }\\\\ &=\dfrac{24}{6}\\\\ &= 4 \end{aligned}\)
   
  Hence, the gradient of the tangent at \(x=6\) is \(4\).
   
 
 
  • Quotient Rule:
     
    If \(u\) and \(v\) are functions of \(x\) and \(v(x) \neq 0\), then    
     
  \(\dfrac{d}{dx}\begin{pmatrix} \dfrac{u}{v} \end{pmatrix} = \dfrac{v \dfrac{du}{dx} - u \dfrac{dv}{dx}}{v^2}\)  
     
 
Remark
     
  \(\dfrac{d}{dx}\begin{pmatrix} \dfrac{u}{v} \end{pmatrix} \neq \dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}} \)   
       
 
 
   Example   
     
  Given \(y=\dfrac{2x+1}{x^2-3},\text{ find } \dfrac{dy}{dx}\).  
     
  Solution:  
     
  \(\text{Let }u=2x+1 \text{ and } v= x^2-3\)  
     
  Then, \(\dfrac{du}{dx} = 2 \text{ and } \dfrac{dv}{dx} = 2x\)  
     
  \(\begin{aligned} \dfrac{dy}{dx} &= \dfrac{v \dfrac{du}{dx} - u \dfrac{dv}{dx}}{v^2}\\\\ &= \dfrac{(x^2-3)(2)-(2x+1)(2x)}{(x^2-3)^2}\\\\ &= \dfrac{2x^2-6-(4x^2+2x)}{(x^2-3)^2}\\\\ &= \dfrac{-2x^2-2x-6}{(x^2-3)^2}\\\\ &= \dfrac{-2(x^2+x+3)}{(x^2-3)^2} \end{aligned}\)