| 
				
					
						| Union of Sets |  
						| 
							The union of sets \(P\) and \(Q\) is written using the symbol \(\cup\).\(P \cup Q\) represents all the elements in set \(P\) or set \(Q\) or in both sets \(P\) and \(Q\). |  
				
					
						| The Union of Two or More Sets Using The Venn Diagram |  
						|  |  
						| It is given that set \(P=\{\text{factors of 24}\}\), set \(Q=\{\text{multiples of 3 which are less than 20}\}\) and set \(R=\{\text{multiples of 4 which are less than 20}\}\).
 List all the elements of \(P \cup Q\), \(P \cup R\), \(Q \cup R\) and \(P\cup Q \cup R\). 
							
								
									| \(P \cup Q\) | \(P=\{1,2,3,4,6,8,12,24\}\) \(Q=\{3,6,9,12,15,18\}\)
 \(P\,\cup Q=\{1,2,3,4,6,8,9,12,15,18,24\}\)
 |  
									| \(P \cup R\) | \(P=\{1,2,3,4,6,8,12,24\}\) \(R=\{4,8,12,16\}\)
 \(P\,\cup R=\{1,2,3,4,6,8,12,16,24\}\)
 |  
									| \(Q \cup R\) | \(Q=\{3,6,9,12,15,18\}\) \(R=\{4,8,12,16\}\)
 \(Q\,\cup R=\{3,4,6,8,9,12,15,16,18\}\)
 |  
									| \(P\cup Q \cup R\) | \(P=\{1,2,3,4,6,8,12,24\}\) \(Q=\{3,6,9,12,15,18\}\)
 \(R=\{4,8,12,16\}\)
 \(P\cup Q \cup R=\{1,2,3,4,6,8,9,12,15,16,18,24\}\)
 |  
 Draw a Venn diagram to represent sets \(P\), \(Q\) and \(R\), and shade the regions that represent \(P \cup Q\) and \(P\cup Q \cup R\). 
							
								
									| \(P \cup Q\) |  |  
									| \(P \cup Q\cup R\) |  |    |    
				
					
						| The Complement of The Union of Sets |  
						| 
							It is written as \((A \cup B)'\).\((A \cup B)'\) read as " the complement of the union of sets of sets \(A\) and \(B\) ".\((A \cup B)'\) refers to all the elements not in set \(A\) and set \(B\). |  
						| Given the universal set, \(\xi=\{x:x\text{ is an integer},50\le x\le60\}\), set \(G=\{x:x\text{ is a prime number}\}\), set \(H=\{x:x\text{ is a multiple of 4}\}\) and set \(I=\{x:x\text{ is a multiple of 5}\}\), list all the elements and state the number of \((G\,\cup H)'\), \((G\,\cup I)'\), \((H\,\cup I)'\) and \((G\,\cup H\,\cup I)'\).
 Solution: \(\xi=\{50,51,52,53,54,55,56,57,58,59,60\}\)\(G=\{53,59\}\)
 \(H=\{52,56,60\}\)
 \(I=\{50,55,60\}\)
 
							
								
									| \(n(G\,\cup H)'\) | \((G\,\cup H)=\{52,53,56,59,60\}\) \((G\,\cup H)'=\{50,51,54,55,57,58\}\)
 \(n(G\,\cup H)'=6\)
 |  
									| \(n(G\,\cup I)'\) | \((G\,\cup I)=\{50,53,55,59,60\}\) \((G\,\cup I)'=\{51,52,54,56,57,58\}\)
 \(n(G\,\cup I)'=6\)
 |  
									| \(n(H\,\cup I)'\) | \((H\,\cup I)=\{50,52,55,56,60\}\) \((H\,\cup I)'=\{51,53,54,57,58,59\}\)
 \(n(H\,\cup I)'=6\)
 |  
									| \(n(G\,\cup H\,\cup I)'\) | \((G\,\cup H\,\cup I)=\{50,52,53,55,56,59,60\}\) \((G\,\cup H\,\cup I)'=\{51,54,57,58\}\)
 \(n(G\,\cup H\,\cup I)'=4\)
 |  |    
				
					
						| The Complements of The Unions of Two or More Sets Using Venn Diagrams |  
						|  |  
						| Three private travel agencies, \(A,B\) and
  \(C\) are chosen to organise the tourism exhibitions \(2020\) in Sarawak. Several divisions in Sarawak are chosen to hold the exhibition as follows: 
 \(\begin{aligned} \xi= \{&\text{Kapit}, \text{Miri}, \text{Bintulu},\text{Sibu}, \text{Limbang}, \text{Mukah}, \text{Kuching}, \text{Betong} \} \end{aligned}\)
 \(\begin{aligned} A=\{&\text{Miri}, \text{Sibu}, \text{Kuching}, \text{Betong}\} \end{aligned}\)
 \(\begin{aligned} B=\{&\text{Miri}, \text{Sibu}, \text{Kapit}, \text{Limbang}\} \end{aligned}\)
 \(\begin{aligned} C=\{&\text{Miri}, \text{Betong}, \text{Kapit}, \text{Mukah}\} \end{aligned}\)
 List all the elements and draw a Venn diagram to represent sets \(A\), \(B\) and \(C\), and shade the region that represents each of \(( A \cup B) '\), \(( B \cup C) '\) and \(( A \cup B \,\cup C) '\). Solution: 
							
								
									| \(( A \cup B) '\) |  
									| \(A\,\cup B=\{\text{Kapit, Miri, Sibu, Limbang, Kuching, Betong\}}\) \((A\,\cup B)'=\{\text{Mukah, Bintulu\}}\)
 |  
									|  |  
							
								
									| \(( B \cup C) '\) |  
									| \(B\,\cup C=\{\text{Kapit, Miri, Sibu, Limbang, Betong, Mukah\}}\) \((B\,\cup C)'=\{\text{Kuching, Bintulu\}}\)
 |  
									|  |  
							
								
									| \(( A \cup B \,\cup C) '\) |  
									| \(A\cup B\,\cup C=\{\text{Kapit, Miri, Sibu, Limbang, Mukah, Betong, Kuching\}}\) \(( A \cup B \,\cup C) '=\{\text{Bintulu}\}\)
 |  
									|  |    |  
					 |