| It is given that the universal set, \(\xi=\{x:x\text{ is an integer, }1\leq x\leq 10\}\), set \(P=\{x:x\text{ is an odd number}\}\), set \(Q=\{x:x\text{ is a prime number}\}\) and
 set \(R=\{x:x\text{ is a multiple of 3}\}\).
 List all the elements of the \(P\,\cap\,Q\), \(P\,\cap\,R\), \(Q\,\cap\,R\) and \(P\,\cap\,Q\, \cap R\). 
							
								
									|  | Answer |  
									| \(P\,\cap\,Q\) | \(P=\{1,3,5,7,9\}\) \(Q=\{2,3,5,7\}\)
 \(P\,\cap\,Q=\{3,5,7\}\)
 |  
									| \(P\,\cap\,R\) | \(P=\{1,3,5,7,9\}\) \(R=\{3,6,9\}\)
 \(P\,\cap\,R=\{3,9\}\)
 |  
									| \(Q\,\cap\,R\) | \(Q=\{2,3,5,7\}\) \(R=\{3,6,9\}\)
 \(Q\,\cap\,R=\{3\}\)
 |  
									| \(P\,\cap\,Q\, \cap R\) | \(P=\{1,3,5,7,9\}\) \(Q=\{2,3,5,7\}\)
 \(R=\{3,6,9\}\)
 \(P\,\cap\,Q\, \cap R=\{3\}\)
 |    
 State the number of elements of the \(n(P\,\cap\,Q)\), \(n(P\,\cap\,R)\), \(n(Q\,\cap\,R)\) and \(n(P\,\cap\,Q\, \cap R)\). 
							
								
									|  | Answer |  
									| \(n(P\,\cap\,Q)\) | \(P\,\cap\,Q=\{3,5,7\}\) \(n(P\,\cap\,Q)=3\)
 |  
									| \(n(P\,\cap\,R)\) | \(P\,\cap\,R=\{3,9\}\) \(n(P\,\cap\,R)=2\)
 |  
									| \(n(Q\,\cap\,R)\) | \(Q\,\cap\,R=\{3\}\) \(n(Q\,\cap\,R)=1\)
 |  
									| \(n(P\,\cap\,Q\, \cap R)\) | \(P\,\cap\,Q\, \cap R=\{3\}\) \(n(P\,\cap\,Q\, \cap R)=1\)
 |  |