\(\dfrac{a^2}{a^2}+\dfrac{b^2}{a^2}=\dfrac{c^2}{a^2}\)
\(1+\left( \dfrac{b}{a} \right)^2=\left( \dfrac{c}{a} \right)^2\)
\(1+\cot^2{A}=\cosec^2{A}\)
|
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{b^2}=\dfrac{c^2}{b^2}\)
\(\left( \dfrac{a}{b} \right)^2+1=\left( \dfrac{c}{b} \right)^2\)
\(1+\tan^2{A}=\sec^2{A}\)
|
\(\dfrac{a^2}{c^2}+\dfrac{b^2}{c^2}=\dfrac{c^2}{c^2}\)
\(\left( \dfrac{a}{c} \right)^2+\left( \dfrac{b}{c} \right)^2=1\)
\(\sin^2{A}+\cos^2{A}=1\)
|