Divide \(\frac{3}{4}\) of the pizza into 6 equal portions. What is the fraction of each part?
SOLUTION:
\(\frac{3}{4}\div6=\)
\(\;\;\;\frac{3}{4}\div6\\\,\\=\frac{3}{4}\div\frac{6}{1}\\\,\\=\frac{3}{4}\times\frac{1}{6}\\\,\\=\frac{3}{24}\\\,\\=\frac{1}{8}\)
So, each part will be \(\frac{1}{8}\).
Aminah will cut the \(2\frac{1}{4}\text{ m}\) ribbon below into 3 pieces of equal length. What is the length, in fractions, of each piece of ribbon?
\(2\frac{1}{4}\div3=\)
\(\;\;\;2\frac{1}{4}\div3\\\,\\=\frac{9}{4}\div\frac{3}{1}\\\,\\=\frac{9}{4}\times\frac{1}{3}\\\,\\=\frac{9}{12}\\\,\\=\frac{3}{4}\)
So, the length of each ribbon cut is \(\frac{3}{4}\text{ m}\).
Sani has \(\frac{1}{2}\ l\) water. Sani uses \(\frac{1}{4}\ l\) of water for each trial to see how far the water rocket moves.
\(\frac{1}{2}\div\frac{1}{4}=\)
\(\frac{1}{2}\div\frac{1}{4}\\\,\\=\frac{1}{2}\times\frac{4}{1}\\\,\\=\frac{4}{2}\\\,\\=2\)
So, the number of trials is 2.
How many \(\frac{1}{4}\text{ kg}\) in a \(1\frac{1}{2}\)kg?
\(1\frac{1}{2}\div\frac{1}{4}=\)
\(\;\;\;1\frac{1}{2}\div\frac{1}{4}\\\,\\=\frac{3}{2}\times\frac{4}{1}\\\,\\=\frac{12}{2}\\\,\\=6\)
So, there are 6 parts of a \(\frac{1}{4}\text{ kg}\) in \(1\frac{1}{2}\) kg.
Treat yourself with rewards for your hard work