Physical Quantities
(Other than base = derived)
Standard form is a way of writing down very large or very small numbers easily and without using lots of zeros. We sometimes call it scientific notation.
\(A\times10^n\;,\;1\leq A < 10\)
Example 1 :
Convert \(135\) to standard numbers.
\(\;\curvearrowleft\curvearrowleft\\1\,3\,5\;. \rightarrow 1.35 \times 10^2\)
two decimal move to the left \(=\) \(+\)
Example 2 :
Convert \(0.00008\) to standard numbers.
\(\;\;\curvearrowright\curvearrowright\curvearrowright\curvearrowright\curvearrowright\\0.0\;\;0\;\;0\;\,0\,\;8 \rightarrow 8 \times 10^{-5}\)
five decimal move to the right \(=\) \(-\)
No prefix \(\rightarrow\) Prefix ( \(\div\) )
Example : Convert \(200\,m\) to \(km\).
\(200\div10^3=0.2\,km\)
Prefix \(\rightarrow\) No prefix ( \(\times\) )
Example : Convert \(0.2\,km\) to \(m\).
\(0.2\times10^3=200\,m\)
Treat yourself with rewards for your hard work