The following diagram shows a right-angled triangle.
a) the length \(PR\)
\(\begin{aligned} PR&= \sqrt{15^2 + 8^2} \\\\&=\sqrt{289} \\\\&= 17 \text{ cm}. \end{aligned}\)
b) \(\text{sin }\angle PRQ\)
\(\begin{aligned} \text{sin}&=\dfrac{\text{opposite}}{\text{hypotenuse}} \\\\&=\dfrac{PQ}{PR} \\\\&=\dfrac{15}{17}. \end{aligned}\)
c) \(\text{cos }\angle PRQ\)
\(\begin{aligned} \text{cos}&=\dfrac{\text{adjacent}}{\text{hypotenuse}} \\\\&=\dfrac{QR}{PR} \\\\&=\dfrac{8}{17}. \end{aligned}\)
d) \(\text{tan }\angle QPR\)
\(\begin{aligned} \text{tan}&=\dfrac{\text{opposite}}{\text{adjacent}} \\\\&=\dfrac{QR}{PQ} \\\\&=\dfrac{8}{15}. \end{aligned}\)
Given that \(\text{sin }\theta=0.6\) and \(\text{cos }\theta=0.8\).
What is the value of \(\text{tan }\theta\)?
The diagram below shows a right-angled triangle \(PQR\).
Given that \(PR= 20 \text{ cm}\) and \(\text{sin } \angle QPR= \dfrac{3}{5}\).
a) Determine the length of \(QR\).
Noted that \(\text{sin } \angle QPR= \dfrac{3}{5}\).
So,
\(\begin{aligned} \text{sin } \angle QPR &=\dfrac{3}{5} \\\\ \dfrac{QR}{PR}&=\dfrac{3}{5} \\\\ \dfrac{QR}{20}&=\dfrac{3}{5} \\\\ QR&=\dfrac{3}{5}\times20 \\\\ QR&= 12 \text{ cm}. \end{aligned}\)
b) Calculate the value of \(\text{cos }\angle QPR\).
First, we need to calculate the length of \(PQ\).
\(\begin{aligned} PQ&=\sqrt{PR^2-QR^2} \\\\&= \sqrt{20^2-12^2} \\\\&= \sqrt{256} \\\\&= 16 \text{ cm}. \\\\\end{aligned}\)
Hence,
\(\begin{aligned} \text{cos } \angle QPR&=\dfrac{PQ}{PR} \\\\&=\dfrac{16}{20} \\\\&=\dfrac{4}{5}. \end{aligned}\)
Noted that,
\(\begin{aligned}1^\circ&=60' \\\\1'&=60'' \end{aligned}\)
Assess yourself by staged practices