Trigonometric Ration of Any Angle

6.2 Trigonometric Ration of Any Angle
 
The image illustrates the concept of trigonometric ratios. It features a right triangle labeled with sides: Hypotenuse, Opposite side, and Adjacent side. The triangle is used to explain the sine, cosine, and tangent functions. Below the triangle, there are three boxes: 1. The first box defines sine (sin θ) as the ratio of the opposite side to the hypotenuse (BC/AB). 2. The second box defines cosine (cos θ) as the ratio of the adjacent side to the hypotenuse (AC/AB). 3. The third box defines tangent (tan θ) as the ratio of the opposite side to the adjacent side (BC/AC).
 
Formula of Cosecant, Secant and Cotangent
Cosecant

\(\text{cosec }\theta= \dfrac{1}{\text{sin }\theta}\)

Secant

\(\text{sec }\theta= \dfrac{1}{\text{cos }\theta}\)

Cotangent

\(\text{cot }\theta= \dfrac{1}{\text{tan }\theta}\)

 
Complementary Angles

The angles \(A\) and \(B\) are complementary angles to each other if \(A+B=90^\circ\). Hence,

\(A=90^\circ-B\) and \(B=90^\circ-A\)

 
Formula of the Complementary Angles
  • \(\text{sin }\theta= \text{cos } (90^{\circ}-\theta)\)
  • \(\text{cos }\theta= \text{sin } (90^{\circ}-\theta)\)
  • \(\text{tan }\theta= \text{cot } (90^{\circ}-\theta)\)
  • \(\text{sec }\theta= \text{cosec } (90^{\circ}-\theta)\)
  • \(\text{cosec }\theta= \text{sec } (90^{\circ}-\theta)\)
  • \(\text{cot }\theta= \text{tan } (90^{\circ}-\theta)\)
 
\(4\) Methods to Determine the Values of the Trigonometric Ratios for Any Angle
Method \(1\): Use a Calculator
  • The values of sine, cosine and tangent can be determined by using a calculator.
  • The values for cosecant, secant and cotangent can be calculated by inversing the values of the trigonometric ratios of sine, cosine and tangent of that particular angle.
Method \(2\): Use a Unit Circle

A visual depiction of a unit circle displaying four varied numbers positioned along its edge, emphasizing mathematical principles.

Method \(3\): Use the Corresponding Trigonometric Ratio of the Reference Angle

The diagram shows the reference angles, \(\alpha\) for the angles \( 0° \leqslant \theta \leqslant 360^{\circ}\) or \( 0° \leqslant \theta \leqslant 2\pi\).

Four distinct graphs illustrating the same trigonometric ratio across all four quadrants for clear visual comparison.

Method \(4\): Use a Right-angled Triangle

The trigonometric ratios of special angles \(30^\circ\)\(45^\circ\) and \(60^\circ\) can be determined by using right-angled triangles.

Angle / Ratio sin cos tan cosec sec cot
\(30^\circ\) \(\dfrac{\pi}{6}\) \(\dfrac{1}{2}\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{1}{\sqrt{3}}\) \(2\) \(\dfrac{2}{\sqrt{3}}\) \(\sqrt{3}\)
\(45^\circ\) \(\dfrac{\pi}{4}\) \(\dfrac{1}{\sqrt{2}}\) \(\dfrac{1}{\sqrt{2}}\) \(1\) \(\sqrt{2}\) \(\sqrt{2}\) \(1\)
\(60^\circ\) \(\dfrac{\pi}{3}\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{1}{2}\) \(\sqrt{3}\) \(\dfrac{2}{\sqrt{3}}\) \(2\) \(\dfrac{1}{\sqrt{3}}\)
 
Example \(1\)
Question
(a) Given that \(\text{sin } 77^{\circ} = 0.9744\) and \(\text{cos } 77^{\circ} = 0.225\).
  Find the value of \(\text{cos }13^{\circ}\).
   
(b) Given \(\text{cos }63^{\circ} = k\), where \(k \gt 0\).
  Find the value of \(\text{cosec }27^{\circ}\) in terms of \(k\).
Solution

(a)

\(\begin{aligned} \text{cos }\theta&= \text{sin } (90^{\circ}-\theta)\\ \text{cos }13^{\circ}&= \text{sin } (90^{\circ}-13^{\circ})\\ &= \text{sin }77^{\circ}\\ &= 0.9744. \end{aligned}\)


(b)

\(\begin{aligned} \text{cosec }\theta&= \text{sec } (90^{\circ}-\theta)\\ \text{cosec }27^{\circ}&= \text{sec } (90^{\circ}-27^{\circ})\\ &= \text{sec }63^{\circ}\\ &= \dfrac{1}{\text{cos }63^{\circ}}\\ &= \dfrac{1}{k}. \end{aligned}\)

 
Example \(2\)
Question

Use the unit circle and state the value of \(\text{cos }135^{\circ}\).

Solution

The coordinates that correspond to \(135^{\circ}\) are

\(\begin{pmatrix} -\dfrac{1}{\sqrt2}, \ \dfrac{1}{\sqrt2} \end{pmatrix}\) and \(\text{cos }135^{\circ} = x\text{-coordinate}\).

Hence, \(\text{cos }135^{\circ} = -\dfrac{1}{\sqrt2}\).

 

Trigonometric Ration of Any Angle

6.2 Trigonometric Ration of Any Angle
 
The image illustrates the concept of trigonometric ratios. It features a right triangle labeled with sides: Hypotenuse, Opposite side, and Adjacent side. The triangle is used to explain the sine, cosine, and tangent functions. Below the triangle, there are three boxes: 1. The first box defines sine (sin θ) as the ratio of the opposite side to the hypotenuse (BC/AB). 2. The second box defines cosine (cos θ) as the ratio of the adjacent side to the hypotenuse (AC/AB). 3. The third box defines tangent (tan θ) as the ratio of the opposite side to the adjacent side (BC/AC).
 
Formula of Cosecant, Secant and Cotangent
Cosecant

\(\text{cosec }\theta= \dfrac{1}{\text{sin }\theta}\)

Secant

\(\text{sec }\theta= \dfrac{1}{\text{cos }\theta}\)

Cotangent

\(\text{cot }\theta= \dfrac{1}{\text{tan }\theta}\)

 
Complementary Angles

The angles \(A\) and \(B\) are complementary angles to each other if \(A+B=90^\circ\). Hence,

\(A=90^\circ-B\) and \(B=90^\circ-A\)

 
Formula of the Complementary Angles
  • \(\text{sin }\theta= \text{cos } (90^{\circ}-\theta)\)
  • \(\text{cos }\theta= \text{sin } (90^{\circ}-\theta)\)
  • \(\text{tan }\theta= \text{cot } (90^{\circ}-\theta)\)
  • \(\text{sec }\theta= \text{cosec } (90^{\circ}-\theta)\)
  • \(\text{cosec }\theta= \text{sec } (90^{\circ}-\theta)\)
  • \(\text{cot }\theta= \text{tan } (90^{\circ}-\theta)\)
 
\(4\) Methods to Determine the Values of the Trigonometric Ratios for Any Angle
Method \(1\): Use a Calculator
  • The values of sine, cosine and tangent can be determined by using a calculator.
  • The values for cosecant, secant and cotangent can be calculated by inversing the values of the trigonometric ratios of sine, cosine and tangent of that particular angle.
Method \(2\): Use a Unit Circle

A visual depiction of a unit circle displaying four varied numbers positioned along its edge, emphasizing mathematical principles.

Method \(3\): Use the Corresponding Trigonometric Ratio of the Reference Angle

The diagram shows the reference angles, \(\alpha\) for the angles \( 0° \leqslant \theta \leqslant 360^{\circ}\) or \( 0° \leqslant \theta \leqslant 2\pi\).

Four distinct graphs illustrating the same trigonometric ratio across all four quadrants for clear visual comparison.

Method \(4\): Use a Right-angled Triangle

The trigonometric ratios of special angles \(30^\circ\)\(45^\circ\) and \(60^\circ\) can be determined by using right-angled triangles.

Angle / Ratio sin cos tan cosec sec cot
\(30^\circ\) \(\dfrac{\pi}{6}\) \(\dfrac{1}{2}\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{1}{\sqrt{3}}\) \(2\) \(\dfrac{2}{\sqrt{3}}\) \(\sqrt{3}\)
\(45^\circ\) \(\dfrac{\pi}{4}\) \(\dfrac{1}{\sqrt{2}}\) \(\dfrac{1}{\sqrt{2}}\) \(1\) \(\sqrt{2}\) \(\sqrt{2}\) \(1\)
\(60^\circ\) \(\dfrac{\pi}{3}\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{1}{2}\) \(\sqrt{3}\) \(\dfrac{2}{\sqrt{3}}\) \(2\) \(\dfrac{1}{\sqrt{3}}\)
 
Example \(1\)
Question
(a) Given that \(\text{sin } 77^{\circ} = 0.9744\) and \(\text{cos } 77^{\circ} = 0.225\).
  Find the value of \(\text{cos }13^{\circ}\).
   
(b) Given \(\text{cos }63^{\circ} = k\), where \(k \gt 0\).
  Find the value of \(\text{cosec }27^{\circ}\) in terms of \(k\).
Solution

(a)

\(\begin{aligned} \text{cos }\theta&= \text{sin } (90^{\circ}-\theta)\\ \text{cos }13^{\circ}&= \text{sin } (90^{\circ}-13^{\circ})\\ &= \text{sin }77^{\circ}\\ &= 0.9744. \end{aligned}\)


(b)

\(\begin{aligned} \text{cosec }\theta&= \text{sec } (90^{\circ}-\theta)\\ \text{cosec }27^{\circ}&= \text{sec } (90^{\circ}-27^{\circ})\\ &= \text{sec }63^{\circ}\\ &= \dfrac{1}{\text{cos }63^{\circ}}\\ &= \dfrac{1}{k}. \end{aligned}\)

 
Example \(2\)
Question

Use the unit circle and state the value of \(\text{cos }135^{\circ}\).

Solution

The coordinates that correspond to \(135^{\circ}\) are

\(\begin{pmatrix} -\dfrac{1}{\sqrt2}, \ \dfrac{1}{\sqrt2} \end{pmatrix}\) and \(\text{cos }135^{\circ} = x\text{-coordinate}\).

Hence, \(\text{cos }135^{\circ} = -\dfrac{1}{\sqrt2}\).