Application of Sine Rule, Cosine Rule and Area of a Triangle

9.4 Application of Sine Rule, Cosine Rule and Area of a Triangle
 
Mind map titled 'Solution of Triangles' featuring equations for the sine rule, cosine rule, and triangle area.
   
Example
Question

Diagram below shows a quadrilateral \(ABCD\).

Diagram of quadrilateral ABCD with sides labeled: AB=10cm, BC=6cm, and angle ADB=35 degrees illustrated.

Area of triangle \(BCD\) is \(12\) cm\(^2\) and \(\angle{BCD}\) is acute angle. Calculate

(a) \(\angle{BCD}\),

(b) Length, in cm, for \(BD\),

(c) \(\angle{ABD}\),

(d) Area, in cm\(^2\), quadrilateral \(ABCD\).

Solution

(a)

Given the area \(\Delta{BCD}=12\) cm\(^2\).

\(\begin{aligned} \dfrac{1}{2}(BC)(CD)\sin{C}&=12 \\ \dfrac{1}{2}(7)(4)\sin{C}&=12 \\ 14\sin{C}&=12 \\ \sin{C}&=\dfrac{12}{14} =0.8571 \\\\C&=59^\circ. \end{aligned}\)

\(\therefore \angle{BCD}=59^\circ.\)


(b)

Apply cosine rule,

\(\begin{aligned} BD^2&=CD^2+BC^2-2(4)(7)\cos{59^\circ} \\ BD^2&=4^2+7^2-2(4)(7)\cos{59^\circ}\\ BD^2&=65-28.84\\ BD^2&=36.16. \end{aligned}\)

\(\therefore BD=6.013\text{ cm}.\)


(c)

Apply sine rule,

\(\begin{aligned} \dfrac{AB}{\sin{35^\circ}}&=\dfrac{6.013}{\sin{A}}\\ \dfrac{10}{\sin{35^\circ}}&=\dfrac{6.013}{\sin{A}}\\ \sin{A}&=\dfrac{6.013\times\sin{35^\circ}}{10}\\ \sin{A}&=0.3449\\\\ A&=20.18^\circ. \end{aligned}\)

\(\angle{ABD}=180^\circ-35^\circ-20.18^\circ.\)

\(\therefore \angle{ABD}=124.82^\circ.\)


(d)

Area of quadrilateral \(ABCD\),

\(\begin{aligned} &=\text{Area }\Delta{ABD}+\text{Area }\Delta{BCD} \\ &=\dfrac{1}{2}(AB)(BD)\sin{B}+12\text{ cm}^2 \\ &=\dfrac{1}{2}(10)(6.013)\sin{124.82^\circ}+12 \\ &=24.68+12 \\ &=36.68\text{ cm}^2. \end{aligned}\)

 

 

Application of Sine Rule, Cosine Rule and Area of a Triangle

9.4 Application of Sine Rule, Cosine Rule and Area of a Triangle
 
Mind map titled 'Solution of Triangles' featuring equations for the sine rule, cosine rule, and triangle area.
   
Example
Question

Diagram below shows a quadrilateral \(ABCD\).

Diagram of quadrilateral ABCD with sides labeled: AB=10cm, BC=6cm, and angle ADB=35 degrees illustrated.

Area of triangle \(BCD\) is \(12\) cm\(^2\) and \(\angle{BCD}\) is acute angle. Calculate

(a) \(\angle{BCD}\),

(b) Length, in cm, for \(BD\),

(c) \(\angle{ABD}\),

(d) Area, in cm\(^2\), quadrilateral \(ABCD\).

Solution

(a)

Given the area \(\Delta{BCD}=12\) cm\(^2\).

\(\begin{aligned} \dfrac{1}{2}(BC)(CD)\sin{C}&=12 \\ \dfrac{1}{2}(7)(4)\sin{C}&=12 \\ 14\sin{C}&=12 \\ \sin{C}&=\dfrac{12}{14} =0.8571 \\\\C&=59^\circ. \end{aligned}\)

\(\therefore \angle{BCD}=59^\circ.\)


(b)

Apply cosine rule,

\(\begin{aligned} BD^2&=CD^2+BC^2-2(4)(7)\cos{59^\circ} \\ BD^2&=4^2+7^2-2(4)(7)\cos{59^\circ}\\ BD^2&=65-28.84\\ BD^2&=36.16. \end{aligned}\)

\(\therefore BD=6.013\text{ cm}.\)


(c)

Apply sine rule,

\(\begin{aligned} \dfrac{AB}{\sin{35^\circ}}&=\dfrac{6.013}{\sin{A}}\\ \dfrac{10}{\sin{35^\circ}}&=\dfrac{6.013}{\sin{A}}\\ \sin{A}&=\dfrac{6.013\times\sin{35^\circ}}{10}\\ \sin{A}&=0.3449\\\\ A&=20.18^\circ. \end{aligned}\)

\(\angle{ABD}=180^\circ-35^\circ-20.18^\circ.\)

\(\therefore \angle{ABD}=124.82^\circ.\)


(d)

Area of quadrilateral \(ABCD\),

\(\begin{aligned} &=\text{Area }\Delta{ABD}+\text{Area }\Delta{BCD} \\ &=\dfrac{1}{2}(AB)(BD)\sin{B}+12\text{ cm}^2 \\ &=\dfrac{1}{2}(10)(6.013)\sin{124.82^\circ}+12 \\ &=24.68+12 \\ &=36.68\text{ cm}^2. \end{aligned}\)