\(\dfrac{a}{\sin{A}}=\dfrac{b}{\sin{B}}=\dfrac{c}{\sin{C}}\)
\(\dfrac{\sin{A}}{a}=\dfrac{\sin{B}}{b}=\dfrac{\sin{C}}{c}\)
In the diagram above, \(LMN\) is a triangle.
Find the length of \(LN\).
Based on the question,
\(\begin{aligned} \angle{M}&=180^\circ -85^ \circ-40^\circ \\ &=55 ^\circ. \end{aligned}\)
Applying the Sine Rule:
\(\begin{aligned} \dfrac{LN}{\sin 55^\circ}&=\dfrac{7}{ \sin 40 ^\circ} \\\\ LN&= \dfrac{7}{ \sin 40 ^\circ} \times \sin 55^\circ \\\\ &= 8.92 \text{ cm}. \end{aligned}\)
Given a triangle \(ABC\) such that \(AB=6.2\) cm, \(AC=4.8\) cm, and \(\angle{ABC}=43^\circ\).
Find the possible values of \(\angle{BCA}\).
Apply the Sine Rule to find the possible angles of \(C\):
\(\begin{aligned} \dfrac{\sin C}{6.2}&=\dfrac{\sin 43^\circ}{ 4.8} .\\\\ \angle BC_1A&=\sin^{-1} \left( \dfrac{\sin 43^\circ}{4.8} \times 6.2 \right) \\\\ &=61.75 ^ \circ. \\\\ \angle BC_2A&= 180 ^\circ-61.75 ^ \circ \\\\ &=118.25 ^\circ. \end{aligned}\)
Treat yourself with rewards for your hard work