| 
			 1. Definition of polynomial 
			Polynomial is a function of the form 
			  
			
				
					
						| \(p(x)=a_{n}x^n+a_{n-1}x^{n-1}+…a_{1}x^1+a_{0}x^0\) | 
					 
				
			 
			  
			In the above expression x is the independent variable. \(a_{n}, a_{n-1}, …, a_{1}\) and  \(a_{0}\)  are the coefficients where  \(a_{n}\)  is known as the leading coefficient.  
			The degree of the polynomial p(x) above is given by n where n is a non-negative integer. Note that  \(1\over x\)  is not a polynomial because the power is -1. 
			Some polynomials have special names. Polynomial with degree n=0, 
			  
			
			  
			is known as a constant function. Polynomial with degree n=1, 
			  
			
			  
			is known as a linear function. Some other names are shown below. 
			  
			
				
					
						| 
						 Degree, n 
						 | 
						
						 Name 
						 | 
					 
					
						| 
						 0 
						 | 
						
						 Constant function 
						 | 
					 
					
						| 
						 1 
						 | 
						
						 Linear function 
						 | 
					 
					
						| 
						 2 
						 | 
						
						 Quadratic function 
						 | 
					 
					
						| 
						 3 
						 | 
						
						 Cubic function 
						 | 
					 
					
						| 
						 4 
						 | 
						
						 Quartic function 
						 | 
					 
					
						| 
						 5 
						 | 
						
						 Quintic function 
						 | 
					 
					
						|   | 
						  | 
					 
				
			 
			  
			When a polynomial is written starting with the term of the highest degree, the terms are said to be in a descending order. When a polynomial is written starting with the term of the lowest degree, the terms are said to be in an ascending order. 
			For instance,  
			  
			
			  
			is a fourth degree (n=4) polynomial in descending order. The leading coefficient is  \(a_{n}=3\). 
			Also, 
			  
			
			  
			is a third degree ( 
			n=3) polynomial in ascending order. The leading coefficient is  \(a_{n}=-1\). 
			  
			2. Addition and subtraction 
			To add or subtract polynomials, you add or subtract the coefficients of the same power. \ 
			Example 
			Given \(p(x)=x^3+2x+7 \text{ and } q(x)=5+3x^2-x^3\), 
			\(p(x)+q(x)=x^3+2x+7 +5+3x^2-x^3\) 
			                    \(=1+(-1)x^3+(0+3)x^2+(2+0)^x+(7+5)\) 
			                    \(=3x^2+2x+12\) 
			  
			\(p(x)-q(x)=(x^3+2x+7) -(5+3x^2-x^3)\) 
			                    \(=(1-(-1)x^3+(0-3)x^2+(2-0)x+(7-5)\) 
			                     \(=2x^3-3x^2+2x+2\) 
			  
			3. Multiplication 
			Multiplying with a constant 
			To multiply a polynomial with a constant, you simply multiply each term in the polynomial with that constant. 
			Example  
			Given  \(p(x)=3x^4-x^3+2x+7\),  find 5p(x). 
			\(5p(x)=5×(3x^4-x^3+2x+7)\) 
			          \(=15x^4-5x^3+10x+35\) 
			  
			Example  
			Given  \(p(x)=x^2-2x+3\)  and \(q(x)=x^2+x+1\),  find p(x)+3q(x). 
			\(p(x)+3q(x)=x^2-2x+3+3(x^2+x+1)\) 
			                     \(=x^2-2x+3+3x^2+3x+3\) 
			                     \(=4x^2+x+6\) 
			  
			Multiplying two polynomials 
			To multiply two polynomials, you multiply each term in one polynomial with all the terms in the other polynomial. 
			Example  
			Given  \(p(x)=x^3+5 \text{ and } q(x)=3x^2-x\),  find  \(p(x)×q(x)\). 
			\(p(x)×q(x)=x^3+5(3x^2-x)\) 
			                   \(=x^3(3x^2-x)+5(3x^2-x)\) 
			                   \(=3x^5-x^4+15x^2-5x\) 
			  
			 |