| 
						 1.  \(4×2=2^2 2^1=2^{2+1}=2^3\) 
						2.  \(3×27=3^1 3^3=3^{1+3}=3^4\) 
						3.  \(2^{3n} \times 2^{5n}=2^{3n+5n}=2^{8n}\) 
						4.  \(3^{4n} \div 3^{5n}=3^{4n-5n}=3^{-n}={1 \over 3^n}\) 
						5.  \(a^{1 \over 2}(9a)^{1 \over 2}=a^{1\over 2} \times 9^{1 \over 2}a^{1 \over 2}\) 
						     \(=a^{1 \over 2}(3a^{1 \over 2})\) 
						     \(=3a^{{1 \over 2} + {1 \over 2}}\) 
						     \(=3a\) 
						  
						Take note parentheses plays an important role. For example,  \(-2^2\)  =-4 but   \(-2^2\)=4. Also,   \(ab^2\)=a×b×b but  \(ab^2\)=a×a×b×b. 
						  
						Example 
						Simplify the following. 
						\((a^4b^3c^2) \times (ab^5c^2) \) 
						      \(=a^{4+1}b^{3+5}c^{2+2}\) 
						      \(=a^5b^8c^4\) 
						  
						\(x^3y^2z^3 \div x^2y^5\) 
						\(=x^{3-2}y^{2-5}z^{3-0}\) 
						\(=x^1y^{-3}z^3 \) 
						\(={xz^3 \over y^3}\) 
						  
						1. Solving equations 
						You can use the following steps to solve equations involving indices: 
						
							- express both sides of the equation in the same base
 
							- equate the indices and solve 
 
						 
						  
						Example 
						1. Solve for x the equation  \(4^x=64.\) 
						           \(4^x=4^3\) 
						           \(x=3\) 
						  
						2. Solve for x the equation  \((2^{3x})(2^{x-1})=32\) 
						           \(2^{3x+x-1}=2^5\) 
						           \(2^{4x-1}=2^5\) 
						           \(4x-1=5\) 
						           \(4x=6\) 
						           \(x={3 \over 2}\) 
						  
						3. Solve for x the equation  \({(16^x)(16^x) \over 16^x}=8\). 
						           \({16^{2x} \over 16^x}=8\) 
						           \(16^{2x-x}=8\) 
						           \(16^x=8\) 
						           \((2^{4x})=2^3\) 
						           \(4x=3\) 
						           \(x={3 \over 4}\) 
						 |