Newton's Universal Law of Gravitation

3.1  Newton's Universal Law of Gravitation
 
  Newton's Universal Law of Gravitation  
 

Gravitational force is directly proportional to the product of masses of two bodies and inversely proportional to the square of the distance between the centers of two bodies.

 
     
 
  Gravitational force between two bodies, \(F\)  
  \(F=\dfrac{Gm_1m_2}{r^2}\)  
     
 

\(m_1\) = mass of first body

\(m_2\) = mass of second body

\(r\) = distance between the centre of first and second body

\(G\) = gravitational constant (\(6.67\times 10^{-11} N\,m^2\,kg^{-2}\))

 
 
  • The larger the mass of the body, the larger the gravitational force
  • The further the distance the bodies. the smaller the gravitational force
 
  Relating g and G  
  \(g=\dfrac{GM}{r^2}\)  
  On surface of a planet, gravitational force is equal to weight.  
     
 
  Relating g and r  
 
  • When \(r < R\), \(g\) is directly proportional to \(r\)
    • \(g \propto r\)
    • R = Earth's radius
 
     
 
  •  When \(r \geq R\)\(g\) is inversely proportional to \(r^2\)
    • \(g=\dfrac{GM}{r^2}\)
    • \(g\propto \dfrac{1}{r^2}\)
 
     
 
  Formulas to calculate the gravitational acceleration  
     
 

Below the surface

\(g=\dfrac{GM}{(R-h)^2}\)

 
     
 

On the surface

\(g=\dfrac{GM}{R^2}\)

 
     
 

At a height

\(g=\dfrac{GM}{(R+h)^2}\)

 
     
 
  Centripetal force, \(F\)  
  \(F=\dfrac{mv^2}{r}\), where \(m\) = mass, \(v\) = linear speed, \(r\) = radius of circle  
     
 

Centripetal force in the motions of Satellites and Planets

  • In the absence of force, object move in the same direction.
  • \(0\text{ N}\) force \(\rightarrow\) object move in the same direction
  • In an orbit, object is always changing its direction
  • There is force acting on the object in direction towards the center of the circle (orbit) \(\rightarrow\) centripetal force
 
  Centripetal acceleration, \(a\)  
  \(a=\dfrac{v^2}{r}\), where \(v\) = linear speed, \(r\) = radius of orbit  
     
 
  Mass of earth, \(M\)  
  \(M=\dfrac{4\pi^2r^3}{GT^2}\), where \(r\) = radius of orbit, \(G = 6.67\times10^{-11}\text{ Nm}^2\text{kg}^{-2}\)\(T\) = period of revolution  
     
 
 

 

Newton's Universal Law of Gravitation

3.1  Newton's Universal Law of Gravitation
 
  Newton's Universal Law of Gravitation  
 

Gravitational force is directly proportional to the product of masses of two bodies and inversely proportional to the square of the distance between the centers of two bodies.

 
     
 
  Gravitational force between two bodies, \(F\)  
  \(F=\dfrac{Gm_1m_2}{r^2}\)  
     
 

\(m_1\) = mass of first body

\(m_2\) = mass of second body

\(r\) = distance between the centre of first and second body

\(G\) = gravitational constant (\(6.67\times 10^{-11} N\,m^2\,kg^{-2}\))

 
 
  • The larger the mass of the body, the larger the gravitational force
  • The further the distance the bodies. the smaller the gravitational force
 
  Relating g and G  
  \(g=\dfrac{GM}{r^2}\)  
  On surface of a planet, gravitational force is equal to weight.  
     
 
  Relating g and r  
 
  • When \(r < R\), \(g\) is directly proportional to \(r\)
    • \(g \propto r\)
    • R = Earth's radius
 
     
 
  •  When \(r \geq R\)\(g\) is inversely proportional to \(r^2\)
    • \(g=\dfrac{GM}{r^2}\)
    • \(g\propto \dfrac{1}{r^2}\)
 
     
 
  Formulas to calculate the gravitational acceleration  
     
 

Below the surface

\(g=\dfrac{GM}{(R-h)^2}\)

 
     
 

On the surface

\(g=\dfrac{GM}{R^2}\)

 
     
 

At a height

\(g=\dfrac{GM}{(R+h)^2}\)

 
     
 
  Centripetal force, \(F\)  
  \(F=\dfrac{mv^2}{r}\), where \(m\) = mass, \(v\) = linear speed, \(r\) = radius of circle  
     
 

Centripetal force in the motions of Satellites and Planets

  • In the absence of force, object move in the same direction.
  • \(0\text{ N}\) force \(\rightarrow\) object move in the same direction
  • In an orbit, object is always changing its direction
  • There is force acting on the object in direction towards the center of the circle (orbit) \(\rightarrow\) centripetal force
 
  Centripetal acceleration, \(a\)  
  \(a=\dfrac{v^2}{r}\), where \(v\) = linear speed, \(r\) = radius of orbit  
     
 
  Mass of earth, \(M\)  
  \(M=\dfrac{4\pi^2r^3}{GT^2}\), where \(r\) = radius of orbit, \(G = 6.67\times10^{-11}\text{ Nm}^2\text{kg}^{-2}\)\(T\) = period of revolution