Parallel Lines and Perpendicular Lines

7.2 Parallel Lines and Perpendicular Lines
 
The image features a title that reads ‘Parallel Lines and Perpendicular Lines.’ Below the title, there are two boxes with descriptions: 1. The left box is labeled ‘Parallel Lines’ and contains the text: ‘Two lines are parallel if they have the same slope (gradient) and never intersect.’ 2. The right box is labeled ‘Perpendicular Lines’ and contains the text: ‘Two lines are perpendicular if the product of their slopes (gradients) is -1.’ There is also a logo for ‘Pandai’ positioned between the two boxes.
 
Parallel Lines
Figure

Two parallel lines with arrows pointing right, each with gradient m_1 and m_2.

Gradient, \(m\)
  • Parallel lines have equal gradients: \(m_1=m_2\).
  • Example:
    The lines \(y=2x+3\) and \(y=2x-4\) are parallel since they have the same gradient, \(m=2\).
Equation of Parallel Lines
  • Given a line with equation \(y=mx+c\), any line parallel to it can be written as \(y=mx+c_1\), where \(c_1\) is a different constant.
Properties
  • Parallel lines are always equidistant from each other.
  • No solution exists for a system of equations representing parallel lines (they do not intersect).
 
Perpendicular Lines
Figure

An illustration featuring two perpendicular lines that cross in the middle, visually representing the m_1 and m_2 gradients.

Gradient Relationship
  • If line \(1\) has a gradient \(m_1\) and line \(2\) has a gradient \(m_2\), then \(m_1 \times m_2=-1\).
  • Example:
    The lines \(y=2x+3\) and \(y=-\dfrac{1}{2}x +5\) are perpendicular because \(2\times\left(-\dfrac{1}{2}\right)=-1\).
Equation of Perpendicular Lines
  • Given a line with gradient, \(m\), a line perpendicular to it will have a gradient of \(-\dfrac{1}{m}\).
Properties
  • Perpendicular lines intersect at a \(90^\circ\) angle.
  • At the point of intersection, the gradients of the two lines multiply to \(-1\).
 
Finding Gradients
From two points

\(m=\dfrac{y_2-y_1}{x_2-x_1}\)

From equations
  • For a line in the form \(y=mx+c\), the gradient is \(m\).
  • For a line in the general form \(ax+by=c\), the gradient is \(m=-\dfrac{a}{b}\).
 
Examples
Parallel Lines
  • Given line \(1\)\(y=3x+2\), find the equation of a line parallel to it passing through \((1,4)\).
     
  • Solution:
    SInce the gradient must be the same, \(m=3\).
    Using \(y=mx+c\) with point \((1,4)\):
    \(\begin{aligned} 4&=3(1)+c \\ c&=1 \end{aligned}\)
    Equation of parallel line: \(y=3x+1\).
Perpendicular Lines
  • Given line \(1\)\(y=2x-5\), find the equation of a line perpendicular to it passing through \((2,3)\).
     
  • Solution:
    Gradient of perpendicular line \(m_2=-\dfrac{1}{2}\).
    Using \(y=mx+c\) with point \((2,3)\):
    \(\begin{aligned} 3&=-\dfrac{1}{2}(2)+c \\ c&=4 \end{aligned}\)
    Equation of peprpendicular line: \(y=-\dfrac{1}{2}x+4\).
 

Parallel Lines and Perpendicular Lines

7.2 Parallel Lines and Perpendicular Lines
 
The image features a title that reads ‘Parallel Lines and Perpendicular Lines.’ Below the title, there are two boxes with descriptions: 1. The left box is labeled ‘Parallel Lines’ and contains the text: ‘Two lines are parallel if they have the same slope (gradient) and never intersect.’ 2. The right box is labeled ‘Perpendicular Lines’ and contains the text: ‘Two lines are perpendicular if the product of their slopes (gradients) is -1.’ There is also a logo for ‘Pandai’ positioned between the two boxes.
 
Parallel Lines
Figure

Two parallel lines with arrows pointing right, each with gradient m_1 and m_2.

Gradient, \(m\)
  • Parallel lines have equal gradients: \(m_1=m_2\).
  • Example:
    The lines \(y=2x+3\) and \(y=2x-4\) are parallel since they have the same gradient, \(m=2\).
Equation of Parallel Lines
  • Given a line with equation \(y=mx+c\), any line parallel to it can be written as \(y=mx+c_1\), where \(c_1\) is a different constant.
Properties
  • Parallel lines are always equidistant from each other.
  • No solution exists for a system of equations representing parallel lines (they do not intersect).
 
Perpendicular Lines
Figure

An illustration featuring two perpendicular lines that cross in the middle, visually representing the m_1 and m_2 gradients.

Gradient Relationship
  • If line \(1\) has a gradient \(m_1\) and line \(2\) has a gradient \(m_2\), then \(m_1 \times m_2=-1\).
  • Example:
    The lines \(y=2x+3\) and \(y=-\dfrac{1}{2}x +5\) are perpendicular because \(2\times\left(-\dfrac{1}{2}\right)=-1\).
Equation of Perpendicular Lines
  • Given a line with gradient, \(m\), a line perpendicular to it will have a gradient of \(-\dfrac{1}{m}\).
Properties
  • Perpendicular lines intersect at a \(90^\circ\) angle.
  • At the point of intersection, the gradients of the two lines multiply to \(-1\).
 
Finding Gradients
From two points

\(m=\dfrac{y_2-y_1}{x_2-x_1}\)

From equations
  • For a line in the form \(y=mx+c\), the gradient is \(m\).
  • For a line in the general form \(ax+by=c\), the gradient is \(m=-\dfrac{a}{b}\).
 
Examples
Parallel Lines
  • Given line \(1\)\(y=3x+2\), find the equation of a line parallel to it passing through \((1,4)\).
     
  • Solution:
    SInce the gradient must be the same, \(m=3\).
    Using \(y=mx+c\) with point \((1,4)\):
    \(\begin{aligned} 4&=3(1)+c \\ c&=1 \end{aligned}\)
    Equation of parallel line: \(y=3x+1\).
Perpendicular Lines
  • Given line \(1\)\(y=2x-5\), find the equation of a line perpendicular to it passing through \((2,3)\).
     
  • Solution:
    Gradient of perpendicular line \(m_2=-\dfrac{1}{2}\).
    Using \(y=mx+c\) with point \((2,3)\):
    \(\begin{aligned} 3&=-\dfrac{1}{2}(2)+c \\ c&=4 \end{aligned}\)
    Equation of peprpendicular line: \(y=-\dfrac{1}{2}x+4\).