Geometric Progression

 
5.2

  Geometric Progression

 
Definition
 
 

A sequence of number where each term is formed by multiplying a constant to the previous term.

 
   
 
  • First term, \(a\).
 
  • Common ratio, \(r\):
      \(\begin{aligned}r&=\dfrac{T_2}{T_1}\\ &=\dfrac{T_3}{T_2}\\ & \qquad\vdots\\&=\dfrac{T_n}{T_{n-1}}.\end{aligned}\)     
 
  • Number of terms, \(n\):
      \(n= 1,2,3,4,5,6, ...\)     
 
  • \(n\)-th term, \(T_n\):
      \(T_n= ar^{n-1}\)     
 
  • Summation of the first \(n\)-th term, \(S_n\):

      \(S_n=\dfrac{a(1-r^n)}{1-r}\)     

\(S_n=\dfrac{a(r^n-1)}{r-1}\)

where
\(r\neq 1\)

 
  • For \(-1\lt r \lt1\), sum of infinity:

      \(S_{\infty}=\dfrac{a}{1-r}\)     

 
Remarks


\(S_1=T_1=a\)

   \(T_n=S_n-S_{n-1}\)   

 
Example 1
 
 

Given the \(4\)th term and the \(6\)th term of a geometric progression is \(24\) and \(10\dfrac{2}{3}\) respectively. 

Find the \(8\)th term if all the terms are positive.

 
   
 
 

Note that

\(\begin{array}{ll} ar^3=24 && (1)\\ ar^5=10\dfrac{2}{3}=\dfrac{32}{3} && (2) \end{array}\)
 

\((2)\div (1):\\ \begin{aligned} \dfrac{ar^5}{ar^3}&= \dfrac{32}{3}\times \dfrac{1}{24}\\ r^2&=\dfrac{4}{9}\\ r&= \pm \dfrac{2}{3}. \end{aligned}\)

Since all the terms are positive,
then \(r=\dfrac{2}{3}\).

\(\begin{aligned} a\times \left(\dfrac{2}{3}\right)^3&=24\\ a \times \dfrac{8}{27}&=24\\ a&= 24\times \dfrac{27}{8}\\ a&=81. \end{aligned}\)


Therefore,

\(T_8=81\left(\dfrac{2}{3}\right)^7=\dfrac{128}{27}.\)

 
   
 
Example 2
 
 

Find the smallest number of terms, \(n\) of the geometric progression \(18, 6, 2, \dfrac{2}{3}...\) such that \(T_n\) is less than \(0.0003\).

Hence, find \(T_n\).

 
   
 
 

Note that

\(a=18\) and
\(r=\dfrac{6}{18}=\dfrac{1}{3}\).
 

\(\begin{aligned}T_n &\lt 0.0003\\ 18 \times \left(\dfrac{1}{3}\right)^{n-1} &\lt 0.0003\\ \left(\dfrac{1}{3}\right)^{n-1} &\lt \dfrac{0.0003}{18}\\ \log \left(\dfrac{1}{3}\right)^{n-1} &\lt \log \dfrac{0.0003}{18}\\ (n-1)\log \left(\dfrac{1}{3}\right) &\lt \log \dfrac{0.0003}{18}\\ n-1 &\gt \cfrac{\log \cfrac{0.0003}{18}}{\log \cfrac{1}{3}}\\ n-1 &\gt 10.01\\ n &\gt 11.01. \end{aligned}\)

\(\therefore n=12.\)


Therefore,

\(T_{12}=18\left(\dfrac{1}{3}\right)^{11}=0.0001016.\)

 
   
 
Example 3
 
 

Express each recurring decimals below as a single fraction in its lowest term.

 
  (a) \(0.7777...\)  
  (b) \(0.151515...\)  
   
 
  (a)

\(0.7777... \\= 0.7+0.07+0.007+...\)


Note that
\(a=0.7\) and
\(r=\dfrac{0.07}{0.7}= 0.1\).


Therefore,

\(\begin{aligned}S_{\infty}&=\dfrac{a}{1-r}\\&=\dfrac{0.7}{1-0.1}\\&= \dfrac{0.7}{0.9}\\&= \dfrac{7}{9}. \end{aligned}\)

 
  (b)

\(0.151515...\\=0.15+0.0015+0.000015...\)


Note that
\(a=0.15\) and
\(r=\dfrac{0.0015}{0.15}= 0.01\).


Therefore,

\(\begin{aligned}S_{\infty}&=\dfrac{a}{1-r}\\&=\dfrac{0.15}{1-0.01}\\&= \dfrac{0.15}{0.99}\\&= \dfrac{15}{99}\\ &= \dfrac{5}{33}. \end{aligned}\)