Geometric Progression

5.2 Geometric Progression
 
A mind map illustrating geometric progression, a method for solving linear equations.
 
Definition
A Geometric Progression (GP) is a sequence of numbers in which each term after the first is found by multiplying the previous term by a fixed, non-zero number called common ratio\(r\).
 
General Form
  • The \(n\)-th term of a geometric progression is given by:

\(T_n=ar^{(n-1)}\)

  • Where:
    \(a=\) first term,
    \(r=\) common ratio,
    \(n=\) term number,
    \(T_n=n\)-th term.
 
Common Ratio, \(r\)
  • Formula to find the common ratio, \(r\):

\(r=\dfrac{T_n}{T_{n-1}}\)

  • Example:
    For the sequence \(2\)\(6\)\(18\)\(54\), the common ratio, \(r\):
    \(\begin{aligned} r&=\dfrac{6}{2} \\ &=3. \end{aligned}\)
 
Sum of the First \(n\) Terms, \(S_n\)
  • The sum of the first \(n\) terms, \(S_n\), of a geometric progression is given by:

\(S_n=a\dfrac{1-r^n}{1-r}\) (if \(r\neq1\))

  • For \(r=1\), the sum is:

\(S_n=an\)

 
Sum to Infinity, \(S_\infin\)
  • The sum to infinity, \(S_\infin\), of a geometric progression, where \(|r|<1\), is given by:

\(S_\infin=\dfrac{a}{1-r}\)

 
Examples
Finding the \(n\)-th Term
  • Given \(a=3\)\(r=2\), find the \(5^{\text{th}}\) term.
  • Solution:
    \(\begin{aligned} T_5&=3\times2^4 \\ &=3\times16 \\ &=48 .\end{aligned}\)
Finding the Sum of the First \(n\) Terms
  • Given \(a=5\)\(r=0.5\), find the sum of the first \(6\) terms.
  • Solution:
    \(\begin{aligned} S_6&=5\dfrac{1-0.5^6}{1-0.5} \\ &=5\dfrac{1-0.015625}{0.5} \\ &=5\times1.96875\times2 \\ &=19.6875 .\end{aligned}\)
 

Geometric Progression

5.2 Geometric Progression
 
A mind map illustrating geometric progression, a method for solving linear equations.
 
Definition
A Geometric Progression (GP) is a sequence of numbers in which each term after the first is found by multiplying the previous term by a fixed, non-zero number called common ratio\(r\).
 
General Form
  • The \(n\)-th term of a geometric progression is given by:

\(T_n=ar^{(n-1)}\)

  • Where:
    \(a=\) first term,
    \(r=\) common ratio,
    \(n=\) term number,
    \(T_n=n\)-th term.
 
Common Ratio, \(r\)
  • Formula to find the common ratio, \(r\):

\(r=\dfrac{T_n}{T_{n-1}}\)

  • Example:
    For the sequence \(2\)\(6\)\(18\)\(54\), the common ratio, \(r\):
    \(\begin{aligned} r&=\dfrac{6}{2} \\ &=3. \end{aligned}\)
 
Sum of the First \(n\) Terms, \(S_n\)
  • The sum of the first \(n\) terms, \(S_n\), of a geometric progression is given by:

\(S_n=a\dfrac{1-r^n}{1-r}\) (if \(r\neq1\))

  • For \(r=1\), the sum is:

\(S_n=an\)

 
Sum to Infinity, \(S_\infin\)
  • The sum to infinity, \(S_\infin\), of a geometric progression, where \(|r|<1\), is given by:

\(S_\infin=\dfrac{a}{1-r}\)

 
Examples
Finding the \(n\)-th Term
  • Given \(a=3\)\(r=2\), find the \(5^{\text{th}}\) term.
  • Solution:
    \(\begin{aligned} T_5&=3\times2^4 \\ &=3\times16 \\ &=48 .\end{aligned}\)
Finding the Sum of the First \(n\) Terms
  • Given \(a=5\)\(r=0.5\), find the sum of the first \(6\) terms.
  • Solution:
    \(\begin{aligned} S_6&=5\dfrac{1-0.5^6}{1-0.5} \\ &=5\dfrac{1-0.015625}{0.5} \\ &=5\times1.96875\times2 \\ &=19.6875 .\end{aligned}\)