Simplify the following algebraic expression.
\((5x^{-1})^3\times4xy^2 \div (xy)^{-4}\)
\(\begin{aligned} &(5x^{-1})^3\times4xy^2 \div (xy)^{-4} \\ &=\dfrac{(5x^{-1})^3\times4xy^2}{(xy)^{-4}} \\ &=5^3x^{-3}\times 4xy^2 \times (xy)^4 \\ &=125\times 4\times x^{-3+1+4}\times y^{2+4} \\ &=500x^2y^6. \end{aligned}\)
Show that \(7^{2x-1}=\dfrac{49^x}{7}\).
Solve for the equation on the left hand side.
\(\begin{aligned} 7^{2x-1}&=\dfrac{7^{2x}}{7} \\ &=\dfrac{49^x}{7}. \end{aligned}\)
Solve the following equation.
\(32^x=\dfrac{1}{8^{x-1}}\)
\(\begin{aligned} 32^x&=\dfrac{1}{8^{x-1}} \\ 2^{5x}&=2^{-3(x-1)} \\ 5x&=-3x+3 \\ 8x&=3 \\ x&=\dfrac{3}{8}. \end{aligned}\)
Challenge your friend in timed Quiz battle