\(\begin{aligned} 2x+y&=4 \quad\,\,\ \cdots \boxed{1} \\ x^2-2xy&=3 \quad\,\,\ \cdots \boxed{2} \\ \boxed{1} \times 2x: 4x^2+2xy&=8x \quad \cdots \boxed{3} \\ \boxed{2}+\boxed{3}: \quad\quad\,\,\,\ 5x^2&=3+8x \\ 5x^2-8x-3&=0 \\ x&=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a} \\ &=\dfrac{8 \pm \sqrt{(-8)^2-4(5)(-3)}}{2(5)} \end{aligned}\)
\(x=1.9136\) or \(x=-0.3136\).
Substitute \(x=1.9136\) into \(\boxed{1}\).
\(\begin{aligned} 2(1.9136)+y&=4 \\ 3.8272+y&=4 \\ y&=0.1728. \end{aligned}\)
Substitute \(x=-0.3136\) into \(\boxed{1}\).
\(\begin{aligned} 2(-0.3136)+y&=4 \\ -0.6272+y&=4 \\ y&=4.6272. \end{aligned}\)
Thus, \(x=1.9136\), \(y=0.1728\) and \(x=-0.3136\), \(y=4.6272\) are the solutions to these simultaneous equations.
|