Simultaneous Equations involving One Linear Equation and One Non-Linear Equation

3.2 Simultaneous Equations involving One Linear Equation and One Non-Linear Equation
 
Description
  • A linear equation is an equation which has a power of \(1\) for each variable.

  • A non-linear equation is an equation which has at least one variable whose power is not \(1\).

  • Solving simultaneous equations means finding the values of variables that satisfy those equations.

 
Example
Linear Equation
  • \(3x+7y=81\)
Non-Linear Equation
  • \(4x^2+5y^2=90\)
  • \(\dfrac{1}{x}+\dfrac{2}{y}=15\)
 
The image is a diagram titled ‘Methods used to Solve Simultaneous Equations.’ It is from Pandai. The diagram has a central bubble with the title, and three arrows pointing outward to smaller bubbles. The three methods listed are ‘Graphical Representation,’ ‘Substitution,’ and ‘Elimination.’ Each method is connected to the central bubble with an arrow. The text is written in a blue, hand-drawn style font.
 
Example \(1\)
Question

Solve the following simultaneous equations using the substitution method.

\(\begin{aligned} 2x+y&=4\\ y^2+5&=4x \end{aligned}\)

Solution

Label all the equations.

\(\begin{aligned} 2x+y&=4 \quad\,\,\, \cdots \boxed{1} \\ y^2+5&=4x \quad \cdots \boxed{2} \end{aligned}\)


From \(\boxed{1}\)

\(\begin{aligned} 2x&=4-y \\ x&=\dfrac{4-y}{2} \quad \cdots \boxed{3}. \end{aligned}\)


Substitute \(\boxed{3}\) into \(\boxed{2}\).

\(\begin{aligned} y^2+5&=4\left(\dfrac{4-y}{2}\right) \\ y^2+5&=8-2y \\ y^2+2y-3&=0 \\ (y+3)(y-1)&=0 \end{aligned}\)

\(y=-3\) or \(y=1\).


Substitute \(y=-3\) and \(y=1\) into \(\boxed{3}\).

\(\begin{aligned} x&=\dfrac{4-(-3)}{2} \\ &=\dfrac{7}{2} \end{aligned}\) or \(\begin{aligned} x&=\dfrac{4-1}{2} \\ &=\dfrac{3}{2}. \end{aligned}\)

Thus, \(x=\dfrac{7}{2}\)\(y=-3\) and \(x=\dfrac{3}{2}\)\(y=1\) are the solutions to these simultaneous equations.

 
Example \(2\)
Question

Solve the following simultaneous equations using the elimination method.

\(\begin{aligned} 2x+y&=4 \\ x^2+2xy&=3 \end{aligned}\)

Solution

\(\begin{aligned} 2x+y&=4 \quad\,\,\ \cdots \boxed{1} \\ x^2-2xy&=3 \quad\,\,\ \cdots \boxed{2} \\ \boxed{1} \times 2x: 4x^2+2xy&=8x \quad \cdots \boxed{3} \\ \boxed{2}+\boxed{3}: \quad\quad\,\,\,\ 5x^2&=3+8x \\ 5x^2-8x-3&=0 \\ x&=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a} \\ &=\dfrac{8 \pm \sqrt{(-8)^2-4(5)(-3)}}{2(5)} \end{aligned}\)

\(x=1.9136\) or \(x=-0.3136\).


Substitute \(x=1.9136\) into \(\boxed{1}\).

\(\begin{aligned} 2(1.9136)+y&=4 \\ 3.8272+y&=4 \\ y&=0.1728. \end{aligned}\)


Substitute \(x=-0.3136\) into \(\boxed{1}\).

\(\begin{aligned} 2(-0.3136)+y&=4 \\ -0.6272+y&=4 \\ y&=4.6272. \end{aligned}\)

Thus, \(x=1.9136\)\(y=0.1728\) and \(x=-0.3136\)\(y=4.6272\) are the solutions to these simultaneous equations.

 

Simultaneous Equations involving One Linear Equation and One Non-Linear Equation

3.2 Simultaneous Equations involving One Linear Equation and One Non-Linear Equation
 
Description
  • A linear equation is an equation which has a power of \(1\) for each variable.

  • A non-linear equation is an equation which has at least one variable whose power is not \(1\).

  • Solving simultaneous equations means finding the values of variables that satisfy those equations.

 
Example
Linear Equation
  • \(3x+7y=81\)
Non-Linear Equation
  • \(4x^2+5y^2=90\)
  • \(\dfrac{1}{x}+\dfrac{2}{y}=15\)
 
The image is a diagram titled ‘Methods used to Solve Simultaneous Equations.’ It is from Pandai. The diagram has a central bubble with the title, and three arrows pointing outward to smaller bubbles. The three methods listed are ‘Graphical Representation,’ ‘Substitution,’ and ‘Elimination.’ Each method is connected to the central bubble with an arrow. The text is written in a blue, hand-drawn style font.
 
Example \(1\)
Question

Solve the following simultaneous equations using the substitution method.

\(\begin{aligned} 2x+y&=4\\ y^2+5&=4x \end{aligned}\)

Solution

Label all the equations.

\(\begin{aligned} 2x+y&=4 \quad\,\,\, \cdots \boxed{1} \\ y^2+5&=4x \quad \cdots \boxed{2} \end{aligned}\)


From \(\boxed{1}\)

\(\begin{aligned} 2x&=4-y \\ x&=\dfrac{4-y}{2} \quad \cdots \boxed{3}. \end{aligned}\)


Substitute \(\boxed{3}\) into \(\boxed{2}\).

\(\begin{aligned} y^2+5&=4\left(\dfrac{4-y}{2}\right) \\ y^2+5&=8-2y \\ y^2+2y-3&=0 \\ (y+3)(y-1)&=0 \end{aligned}\)

\(y=-3\) or \(y=1\).


Substitute \(y=-3\) and \(y=1\) into \(\boxed{3}\).

\(\begin{aligned} x&=\dfrac{4-(-3)}{2} \\ &=\dfrac{7}{2} \end{aligned}\) or \(\begin{aligned} x&=\dfrac{4-1}{2} \\ &=\dfrac{3}{2}. \end{aligned}\)

Thus, \(x=\dfrac{7}{2}\)\(y=-3\) and \(x=\dfrac{3}{2}\)\(y=1\) are the solutions to these simultaneous equations.

 
Example \(2\)
Question

Solve the following simultaneous equations using the elimination method.

\(\begin{aligned} 2x+y&=4 \\ x^2+2xy&=3 \end{aligned}\)

Solution

\(\begin{aligned} 2x+y&=4 \quad\,\,\ \cdots \boxed{1} \\ x^2-2xy&=3 \quad\,\,\ \cdots \boxed{2} \\ \boxed{1} \times 2x: 4x^2+2xy&=8x \quad \cdots \boxed{3} \\ \boxed{2}+\boxed{3}: \quad\quad\,\,\,\ 5x^2&=3+8x \\ 5x^2-8x-3&=0 \\ x&=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a} \\ &=\dfrac{8 \pm \sqrt{(-8)^2-4(5)(-3)}}{2(5)} \end{aligned}\)

\(x=1.9136\) or \(x=-0.3136\).


Substitute \(x=1.9136\) into \(\boxed{1}\).

\(\begin{aligned} 2(1.9136)+y&=4 \\ 3.8272+y&=4 \\ y&=0.1728. \end{aligned}\)


Substitute \(x=-0.3136\) into \(\boxed{1}\).

\(\begin{aligned} 2(-0.3136)+y&=4 \\ -0.6272+y&=4 \\ y&=4.6272. \end{aligned}\)

Thus, \(x=1.9136\)\(y=0.1728\) and \(x=-0.3136\)\(y=4.6272\) are the solutions to these simultaneous equations.