Choose any two equations.
\(\begin{aligned} 4x-3y+z&=-10 \quad \cdots\boxed{1} \\ 2x+y+3z&=0 \quad \quad \,\, \cdots \boxed{2} \end{aligned}\)
Multiply equation \(\boxed{2}\) with \(2\) so that the coefficients of \(x\) are equal.
\(\boxed{2}\times 2:\quad 4x+2y+6z=0 \quad \cdots \boxed{3}.\)
Eliminate the variable \(x\) by subtracting \(\boxed{1}\) from \(\boxed{3}\).
\(\boxed{3}-\boxed{1}:\quad 5y+5z=10 \quad \cdots \boxed{4}.\)
Choose another set of two equations.
\(\begin{aligned} 2x+y+3z&=0 \quad\,\,\, \cdots \boxed{5} \\ -x+2y-5z&=17 \quad \cdots\boxed{6} \end{aligned}\)
Multiply equation \(\boxed{6}\) with \(2\) so that the coefficients of variable \(x\) are equal.
\(\begin{aligned} \boxed{6}\times2:-2x+4y-10z&=34 \quad\cdots\boxed{7}\\ \boxed{5}+\boxed{7}: \quad\quad\quad 5y-7z&=34 \quad\cdots\boxed{8} \\ \boxed{4}-\boxed{8}: \quad\quad\quad\quad\,\,\,\ 12z&=-24 \\ z&=-2. \end{aligned}\)
Substitute \(z=-2\) into \(\boxed{8}\).
\(\begin{aligned} 5y-7(-2)&=34 \\ 5y+14&=34\\ 5y&=20 \\ y&=4. \end{aligned}\)
Substitute \(y=4\) and \(z=-2\) into \(\boxed{1}\).
\(\begin{aligned} 4x-3(4)+(-2)&=-10\\ 4x-12-2&=-10\\ 4x&=4\\ x&=1. \end{aligned}\)
Thus, \(x=1\), \(y=4\), and \(z=-2\) are the solutions to this system of linear equations.
|