Based on equation \(x^2+4x-7=0\),
\(a=1\),
\(b=4\),
\(c=-7\).
Move the constant term, \(c\) to the right hand side of the equation,
\(\begin{aligned} x^2+4x-7&=0 \\ x^2+4x&=7. \end{aligned}\)
Add the term \(\left( \dfrac{b}{2} \right)^2\) on the left and right hand side of the equation,
\(\begin{aligned} x^2+4x+\left( \dfrac{4}{2} \right)^2&=7+\left( \dfrac{4}{2} \right)^2 \\ x^2+4x+2^2&=7+2^2\\ (x+2)^2&=11\\ x+2&=\pm \sqrt{11}. \end{aligned}\)
\(x=-5.317\) or \(x=1.317\).
Hence, the solutions of the equation \(x^2+4x-7=0\) are \(-5.317\) and \(1.317\).
|