| 1. Finding function Given  \({dy \over dx}\), the function y=f(x) is found by integrating  \(dy \over dx\)  with respect to x and using the conditions given to calculate the constant of integration.        Step 1: integrate the derivative        Step 2: use the values given to calculate the constant of integration        Step 3: form the function Example Given that  \(dy \over dx\) =2x-3 and that y=12 when x=2, find the equation of y in terms of x.   
				
					
						| \(y=\int {dy \over dx}dx \) \( =\int (2x-3)dx \) \( =x^2-3x+C \) \( When \text { }x=2; \)             \( 4-6+C=12 \) \( C=52 \) \( y=x^2-3x+{5 \over 2} \) |  
 Example Given that  \(dy \over dt\) =5t2-2 and that y=10 when t=-1, find the equation of y when t=1.   
				
					
						| \( y=\int {dy \over dt}dt \) \( =\int (5t^2-2)dt \) \( ={5 \over 3}t^3-2t+C \) \( When \text { }t=-1; \)             \( -{5 \over 3}+2+C=10 \) \( C={29 \over 3 } \) \( y={5 \over 3}t^3-2t+{29 \over 3} \) |      Example 3 Find the equation of a curve with gradient x2-2x and passing through point (1,-1).    
				
					
						| \( y=\int (x^2-2x)dx \) \( =13x^3-x^2+C \) \( At (1,-1); \)            \( 13-1+C=-1 \) \( C=-13 \) \( y=13x^3-x^2-13 \) |    2. Calculating rate of change Given the rate of change  \(dy \over dt\), the function y=f(t) is found by integrating dydt with respect to t. As above, use the conditions given to calculate the value of the constant of integration. Example The rate of change of s with respect to t is given by dsdt=8t3 and when t=2, s=2. Find s in terms of t.   
				
					
						| \(s=\int {ds \over dt}dt \) \( =8t^3dt \) \( =2t^4+C \) \( When t=2; \)               \( 32+C=2 \) \( C=-30 \) \( s=2t^4-30 \) |    3. Other real life examples Example The change in the current of an electric circuit is given by   
				
					
						| \({dI \over dt}=-{100t \over t^2} \) |    where current, I, is measured in amperes and time t is measured in seconds.  Form the current function I(t) given that the current is 150 amperes at time 2 seconds.   
				
					
						| \( {dI \over dt}=-100t^{-2} \) \( I=\int -100t^{-2}dt \) \( =-100t-1-1+C \) \( When t=2; \)           \( 1002+C=150 \) \( C=100 \) \(∴I(t)=100t+100\) |    Example A production manager finds that the cost to produce x number of items, in RM per item, is   
				
					
						| \({dC \over dx}=3.15+0.004x.\) |    Calculate the total cost of producing one hundred items if the fixed costs (that is the cost before production began) is RM450.   
				
					
						| \( Cost = \int (3.15+0.004x)dx \) \( =3.15x+0.002x^2+C \) \( When \text { }x=0; C=450 \) \( Then, when \text { } x=100; \) \( Cost =3.15(100)+0.002(100)2+450 \) \( = RM 785 \) |    |